首页> 外文期刊>ACM transactions on database systems >Materialization Optimizations for Feature Selection Workloads
【24h】

Materialization Optimizations for Feature Selection Workloads

机译:要素选择工作负载的实现优化

获取原文
获取原文并翻译 | 示例

摘要

There is an arms race in the data management industry to support statistical analytics. Feature selection, the process of selecting a feature set that will be used to build a statistical model, is widely regarded as the most critical step of statistical analytics. Thus, we argue that managing the feature selection process is a pressing data management challenge. We study this challenge by describing a feature selection language and a supporting prototype system that builds on top of current industrial R-integration layers. From our interactions with analysts, we learned that feature selection is an interactive human-in-the-loop process, which means that feature selection workloads are rife with reuse opportunities. Thus, we study how to materialize portions of this computation using not only classical database materialization optimizations but also methods that have not previously been used in database optimization, including structural decomposition methods (like QR factorization) and warmstart. These new methods have no analogue in traditional SQL systems, but they may be interesting for array and scientific database applications. On a diverse set of datasets and programs, we find that traditional database-style approaches that ignore these new opportunities are more than two orders of magnitude slower than an optimal plan in this new trade-off space across multiple R backends. Furthermore, we show that it is possible to build a simple cost-based optimizer to automatically select a near-optimal execution plan for feature selection.
机译:数据管理行业中存在一场军备竞赛,以支持统计分析。特征选择是选择将用于构建统计模型的特征集的过程,被广泛认为是统计分析的最关键步骤。因此,我们认为管理特征选择过程是一项紧迫的数据管理挑战。通过描述一种功能选择语言和一个基于当前工业R集成层的支持原型系统,我们研究了这一挑战。从与分析人员的互动中,我们了解到特征选择是一个交互式的“人在环”过程,这意味着特征选择工作量充满了重用机会。因此,我们研究如何不仅使用经典的数据库实现优化,而且使用以前未在数据库优化中使用的方法,包括结构分解方法(如QR因式分解)和热启动,来实现此计算的一部分。这些新方法在传统的SQL系统中没有类似的方法,但对于数组和科学数据库应用程序可能会很有趣。在各种各样的数据集和程序上,我们发现在多个R后端的这种新的折衷空间中,忽略这些新机会的传统数据库风格方法比最佳计划要慢两个数量级。此外,我们表明可以构建一个简单的基于成本的优化器,以自动选择一个接近最佳的执行计划以进行功能选择。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号