首页> 外文期刊>ACM Transactions on Computer-Human Interaction >Queueing Network-Model Human Processor (QN-MHP): A Computational Architecture for Multitask Performance in Human-Machine Systems
【24h】

Queueing Network-Model Human Processor (QN-MHP): A Computational Architecture for Multitask Performance in Human-Machine Systems

机译:排队网络模型人处理器(QN-MHP):人机系统中多任务性能的计算体系结构

获取原文
获取原文并翻译 | 示例

摘要

Queueing Network-Model Human Processor (QN-MHP) is a computational architecture that integrates two complementary approaches to cognitive modeling: the queueing network approach and the symbolic approach (exemplified by the MHP/GOMS family of models, ACT-R, EPIC, and SOAR). Queueing networks are particularly suited for modeling parallel activities and complex structures. Symbolic models have particular strength in generating a person's actions in specific task situations. By integrating the two approaches, QN-MHP offers an architecture for mathematical modeling and real-time generation of concurrent activities in a truly concurrent manner. QN-MHP expands the three discrete serial stages of MHP, of perceptual, cognitive, and motor processing, into three continuous-transmission subnetworks of servers, each performing distinct psychological functions specified with a GOMS-style language. Multitask performance emerges as the behavior of multiple streams of information flowing through a network, with no need to devise complex, task-specific procedures to either interleave production rules into a serial program (ACT-R), or for an executive process to interactively control task processes (EPIC). Using QN-MHP, a driver performance model was created and interfaced with a driving simulator to perform a vehicle steering, and a map reading task concurrently and in real time. The performance data of the model are similar to human subjects performing the same tasks.
机译:排队网络模型人处理器(QN-MHP)是一种计算体系结构,集成了两种互补的认知建模方法:排队网络方法和符号方法(例如MHP / GOMS系列模型,ACT-R,EPIC和飙升)。排队网络特别适合于对并行活动和复杂结构进行建模。符号模型在特定任务情况下产生人的动作方面具有特别的优势。通过整合两种方法,QN-MHP提供了一种架构,用于以真正的并发方式进行数学建模和并发活动的实时生成。 QN-MHP将MHP的三个离散的连续阶段(感知,认知和运动处理)扩展到服务器的三个连续传输子网中,每个子网都执行用GOMS风格语言指定的独特心理功能。多任务性能随着网络中流经多条信息流的行为而出现,而无需设计复杂的,特定于任务的过程即可将生产规则交织到串行程序(ACT-R)中,也无需执行过程来交互控制任务流程(EPIC)。使用QN-MHP,创建了驾驶员性能模型,并将其与驾驶模拟器连接以同时并实时执行车辆转向和地图读取任务。该模型的性能数据类似于执行相同任务的人类受试者。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号