首页> 外文期刊>ACM Transactions on Computer-Human Interaction >Understand Users' Comprehension and Preferences for Composing Information Visualizations
【24h】

Understand Users' Comprehension and Preferences for Composing Information Visualizations

机译:了解用户对信息可视化的理解和偏好

获取原文
获取原文并翻译 | 示例

摘要

We are developing an automated visualization system that helps users combine two or more existing information graphics to form an integrated view. To establish empirical foundations for building such a system, we designed and conducted two studies on Amazon Mechanical Turk to understand users' comprehension and preferences of composite visualization under different conditions (e.g., data and tasks). In Study 1, we collected more than 1,500 textual descriptions capturing about 500 participants' insights of given information graphics, which resulted in a task-oriented taxonomy of visual insights. In Study 2, we asked 240 participants to rank composite visualizations by their suitability for acquiring a given visual insight identified in Study 1, which resulted in ranked user preferences of visual compositions for acquiring each type of insight. In this article, we report the details of our two studies and discuss the broader implications of our crowdsourced research methodology and results to HCI-driven visualization research.
机译:我们正在开发一种自动化的可视化系统,该系统可以帮助用户将两个或多个现有的信息图形组合起来以形成一个集成的视图。为了建立构建这样一个系统的经验基础,我们在Amazon Mechanical Turk上设计并进行了两项研究,以了解用户在不同条件(例如数据和任务)下对复合可视化的理解和偏好。在研究1中,我们收集了1,500多个文字描述,捕获了大约500名参与者对给定信息图形的见解,从而形成了以任务为导向的视觉见解分类法。在研究2中,我们要求240名参与者根据他们对获取研究1中确定的给定视觉洞察力的适合性来对复合可视化进行排名,从而得出用户对获取每种类型的洞察力的视觉构图的排名偏好。在本文中,我们报告了这两项研究的细节,并讨论了我们的众包研究方法和结果对HCI驱动的可视化研究的更广泛意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号