首页> 外文期刊>ACM Transactions on Computer-Human Interaction >No Need to Laugh Out Loud: Predicting Humor Appraisal of Comic Strips Based on Physiological Signals in a Realistic Environment
【24h】

No Need to Laugh Out Loud: Predicting Humor Appraisal of Comic Strips Based on Physiological Signals in a Realistic Environment

机译:无需大声笑:在现实环境中基于生理信号预测连环漫画的幽默评价

获取原文
获取原文并翻译 | 示例

摘要

We explore electroencephalography (EEG), electrodermal activity (EDA), and electrocardiography (ECG) as valid sources to infer humor appraisal in a realistic environment. We report on an experiment in which 25 participants browsed a popular user-generated humorous content website while their physiological responses were recorded. We build predictive models to infer the participants' appraisal of the humorousness of the content and demonstrate that the fusion of several physiological signals can lead to classification performances up to 0.73 in terms of the area under the ROC curve (AUC). We identify that the most discriminative changes in physiological signals happen at the later stages of the information consumption process, reflected in changes on the upper EEG frequency bands, higher levels of EDA, and heart-rate acceleration. Additionally, we present a comprehensive analysis by benchmarking the predictive power of each of the physiological signals separately, and by comparing them to state-of-the-art facial recognition algorithms based on facial video recordings. The classification performance ranges from 0.88 (in terms of AUC) when combining physiological signals and video recordings, to 0.55 when using ECG signals alone.
机译:我们探索脑电图(EEG),皮肤电活动(EDA)和心电图(ECG)作为推断现实环境中幽默评估的有效来源。我们报告了一项实验,其中25名参与者浏览了一个流行的用户生成的幽默内容网站,同时记录了他们的生理反应。我们建立了预测模型来推断参与者对内容的幽默程度的评估,并证明几种生理信号的融合可以导致ROC曲线下面积(AUC)达到0.73的分类性能。我们发现,生理信号中最具区别的变化发生在信息消耗过程的后期,反映在较高的EEG频段,较高的EDA水平和心率加速变化上。此外,我们通过分别对每个生理信号的预测能力进行基准测试,并将它们与基于面部视频记录的最新面部识别算法进行比较,来进行全面的分析。分类性能从组合生理信号和视频记录时的0.88(就AUC而言)到仅使用ECG信号时的0.55不等。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号