首页> 外文期刊>ACM Transactions on Computational Theory >A Rank Lower Bound for Cutting Planes Proofs of Ramsey's Theorem
【24h】

A Rank Lower Bound for Cutting Planes Proofs of Ramsey's Theorem

机译:拉姆西定理的平面证明的秩下界

获取原文
获取原文并翻译 | 示例

摘要

Ramsey's Theorem is a cornerstone of combinatorics and logic. In its simplest formulation it says that for every k > 0 and s > 0, there is a minimum number r(k, s) such that any simple graph with at least r(k, s) vertices contains either a clique of size k or an independent set of size s. We study the complexity of proving upper bounds for the number r(k, k). In particular, we focus on the prepositional proof system cutting planes; we show that any cutting plane proof of the upper bound "r(k, k) ≤ 4~k" requires high rank. In order to do that we show a protection lemma which could be of independent interest.
机译:拉姆西定理是组合和逻辑的基石。用最简单的公式表示,对于每一个k> 0和s> 0,都有一个最小值r(k,s),这样任何具有至少r(k,s)个顶点的简单图都包含大小为k的团或一组独立的大小s。我们研究证明数r(k,k)的上限的复杂性。特别是,我们关注介词证明系统的切割平面;我们表明,任何上限为“ r(k,k)≤4〜k”的切割平面证明都需要很高的等级。为此,我们展示了一个保护引理,该引理可能是独立的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号