首页> 外文期刊>ACM transactions on computational logic >Pure Sequent Calculi: Analyticity and Decision Procedure
【24h】

Pure Sequent Calculi: Analyticity and Decision Procedure

机译:纯后继计算:分析和决策程序

获取原文
获取原文并翻译 | 示例

摘要

Analyticity, also known as the subformula property, typically guarantees decidability of derivability in propositional sequent calculi. To utilize this fact, two substantial gaps have to be addressed: (i) What makes a sequent calculus analytic? and (ii) How do we obtain an efficient decision procedure for derivability in an analytic calculus? In the first part of this article, we answer these questions for pure calculi-a general family of fully structural propositional sequent calculi whose rules allow arbitrary context formulas. We provide a sufficient syntactic criterion for analyticity in these calculi, as well as a productive method to construct new analytic calculi from given ones. We further introduce a scalable decision procedure for derivability in analytic pure calculi by showing that it can be (uniformly) reduced to classical satisfiability. In the second part of the article, we study the extension of pure sequent calculi with modal operators. We show that such extensions preserve the analyticity of the calculus and identify certain restricted operators (which we call "Next" operators) that are also amenable for a general reduction of derivability to classical satisfiability. Our proofs are all semantic, utilizing several strong general soundness and completeness theorems with respect to non-deterministic semantic frameworks: bivaluations (for pure calculi) and Kripke models (for their extension with modal operators).
机译:解析性,也称为子公式属性,通常可以保证命题继发性结石的可导性的可判定性。为了利用这一事实,必须解决两个重要的空白:(i)是什么使得后续演算分析成为可能? (ii)如何获得解析演算中可导性的有效决策程序?在本文的第一部分,我们针对纯结石回答这些问题,这是一个完全结构的命题后继结石的通用系列,其规则允许使用任意上下文公式。我们为这些演算提供了充分的句法分析依据,并为从给定的演算构造新的分析演算提供了一种有效的方法。通过进一步证明可被(统一)简化为经典可满足性,我们进一步介绍了可解析纯计算的可扩展性决策程序。在本文的第二部分中,我们研究了使用模态运算符的纯后继结石的扩展。我们证明了这种扩展保留了演算的分析性,并确定了某些受限运算符(我们称其为“ Next”运算符),这些运算符也适用于一般可简化性向经典可满足性的降低。我们的证明都是语义性的,利用了关于非确定性语义框架的几个强大的一般性稳健性和完整性定理:重估(用于纯计算)和Kripke模型(用于使用模态运算符进行扩展)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号