首页> 外文期刊>ACM transactions on computational logic >Paraconsistent Reasoning and Preferential Entailments by Signed Quantified Boolean Formulae
【24h】

Paraconsistent Reasoning and Preferential Entailments by Signed Quantified Boolean Formulae

机译:有符号量化布尔公式的超一致推理和优先蕴涵

获取原文
获取原文并翻译 | 示例

摘要

We introduce a uniform approach of representing a variety of paraconsistent nonmonotonic formalisms by quantified Boolean formulae (QBFs) in the context of multiple-valued logics. We show that this framework provides a useful platform for capturing, in a simple and natural way, a wide range of methods for preferential reasoning. The outcome is a subtle approach to represent the underlying formalisms, which induces a straightforward way to compute the corresponding entail-ments: By incorporating off-the-shelf QBF solvers it is possible to simulate within our framework various kinds of preferential formalisms, among which are Priest's logic LPm of reasoning with minimal inconsistency, Batens' adaptive logic ACLuNs2, Besnard and Schaub's inference relation |=_n, a variety of formula-preferential systems, some bilattice-based preferential relations (e.g., |=_(I_1) and |=_(I_2)), and consequence relations for reasoning with graded uncertainty, such as the four-valued logic |=_c~4.
机译:我们引入了一种在多值逻辑上下文中通过量化布尔公式(QBF)表示各种超常一致的非单调形式主义的统一方法。我们表明,该框架提供了一个有用的平台,以简单自然的方式捕获了各种优先推理的方法。结果是一种表示基本形式主义的微妙方法,这引出了一种直接的方法来计算相应的需求:通过合并现有的QBF求解器,可以在我们的框架内模拟各种优先形式主义,其中是Priest逻辑推理中具有最小一致性的LPm,Batens自适应逻辑ACLuNs2,Besnard和Schaub的推论关系| = _n,各种公式优先系统,一些基于双比对的优先关系(例如| = _(I_1)和| = _(I_2)),以及具有分级不确定性的推理结果关系,例如四值逻辑| = _c〜4。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号