首页> 外文期刊>ACM transactions on computational logic >A Counterexample-Guided Abstraction-Refinement Framewor for Markov Decision Processes
【24h】

A Counterexample-Guided Abstraction-Refinement Framewor for Markov Decision Processes

机译:马尔可夫决策过程的反例指导抽象提炼框架

获取原文
获取原文并翻译 | 示例

摘要

The main challenge in using abstractions effectively is to construct a suitable abstraction for the system being verified. One approach that tries to address this problem is that of counterexample guided abstraction refinement (CEGAR), wherein one starts with a coarse abstraction of the system, and progressively refines it, based on invalid counterexamples seen in prior model checking runs, until either an abstraction proves the correctness of the system or a valid counterexample is generated. While CEGAR has been successfully used in verifying nonprob-abilistic systems automatically, CEGAR has only recently been investigated in the context of probabilistic systems. The main issues that need to be tackled in order to extend the approach to probabilistic systems is a suitable notion of "counterexample", algorithms to generate counterexamples, check their validity, and then automatically refine an abstraction based on an invalid counterexample. In this article, we address these issues, and present a CEGAR framework for Markov decision processes.
机译:有效使用抽象的主要挑战是为要验证的系统构造合适的抽象。尝试解决此问题的一种方法是反例指导抽象提炼(CEGAR),其中从系统的粗略抽象开始,然后根据先前模型检查运行中看到的无效反例逐步完善它,直到其中一个抽象证明系统的正确性或生成有效的反例。尽管CEGAR已成功地用于自动验证非概率系统,但CEGAR直到最近才在概率系统中进行了研究。为了将方法扩展到概率系统,需要解决的主要问题是“反例”的合适概念,生成反例,检查其有效性然后基于无效的反例自动优化抽象的算法。在本文中,我们将解决这些问题,并提出用于马尔可夫决策过程的CEGAR框架。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号