首页> 外文期刊>ACM transactions on computational logic >Succinctness of the Complement and Intersection of Regular Expressions
【24h】

Succinctness of the Complement and Intersection of Regular Expressions

机译:正则表达式的补语和交点的简洁性

获取原文
获取原文并翻译 | 示例

摘要

We study the succinctness of the complement and intersection of regular expressions. In particular, we show that when constructing a regular expression defining the complement of a given regular expression, a double exponential size increase cannot be avoided. Similarly, when constructing a regular expression defining the intersection of a fixed and an arbitrary number of regular expressions, an exponential and double exponential size increase, respectively, cannot be avoided. All mentioned lower bounds improve the existing ones by one exponential and are tight in the sense that the target expression can be constructed in the corresponding time class, that is, exponential or double exponential time. As a by-product, we generalize a theorem by Ehrenfeucht and Zeiger stating that there is a class of DFAs which are exponentially more succinct than regular expressions, to a fixed alphabet. When the given regular expressions are one-unambiguous, as for instance required by the XML Schema specification, the complement can be computed in polynomial time whereas the bounds concerning intersection continue to hold. For the subclass of single-occurrence regular expressions, we prove a tight exponential lower bound for intersection.
机译:我们研究正则表达式的补码和交点的简洁性。特别地,我们表明,当构造定义给定正则表达式的补码的正则表达式时,无法避免双指数大小的增加。类似地,当构造定义固定和任意数量的正则表达式的交集的正则表达式时,无法避免分别增加指数和双指数大小。所有提到的下限将现有的下限提高一个指数,并且严格意义上来说,目标表达式可以在相应的时间类别(即指数或双指数时间)中构建。作为副产品,我们对Ehrenfeucht和Zeiger的一个定理进行了概括,该定理指出,一类DFA比固定表达式的指数简洁得多,并且固定成一个字母。当给定的正则表达式是一个明确的(例如XML Schema规范要求的)时,可以在多项式时间内计算补数,而与交集有关的边界继续保持不变。对于单次出现正则表达式的子类,我们证明了相交的紧指数下界。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号