首页> 外文期刊>ACM transactions on computational logic >Parameterized Complexity of DPLL Search Procedures
【24h】

Parameterized Complexity of DPLL Search Procedures

机译:DPLL搜索过程的参数化复杂度

获取原文
获取原文并翻译 | 示例

摘要

We study the performance of DPLL algorithms on parameterized problems. In particular, we investigate how difficult it is to decide whether small solutions exist for satisfiability and other combinatorial problems. For this purpose we develop a Prover-Delayer game that models the running time of DPLL procedures and we establish an information-theoretic method to obtain lower bounds to the running time of parameterized DPLL procedures. We illustrate this technique by showing lower bounds to the parameterized pigeonhole principle and to the ordering principle. As our main application we study the DPLL procedure for the problem of deciding whether a graph has a small clique. We show that proving the absence of a k-clique requires n~(Ω(k)) steps for a nontrivial distribution of graphs close to the critical threshold. For the restricted case of tree-like Parameterized Resolution, this result answers a question asked by Beyersdorff et al. [2012] of understanding the Resolution complexity of this family of formulas.
机译:我们研究了DPLL算法在参数化问题上的性能。特别是,我们调查了决定是否存在满足满意度和其他组合问题的小解决方案有多么困难。为此,我们开发了一个Prover-Delayer游戏,该游戏可以对DPLL过程的运行时间进行建模,并建立一种信息理论方法来获得参数化DPLL过程的运行时间的下限。我们通过显示参数化鸽孔原理和排序原理的下界来说明此技术。作为我们的主要应用程序,我们研究DPLL程序,以解决确定图形是否具有小的集团的问题。我们证明,证明k斜率的缺失需要n〜(Ω(k))个步骤,以使图的非平凡分布接近临界阈值。对于树状参数化分辨率的受限情况,此结果回答了Beyersdorff等人提出的问题。 [2012]了解该系列公式的分辨率复杂度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号