首页> 外文期刊>ACM transactions on autonomous and adaptive systems >PSINES: Activity and Availability Prediction for Adaptive Ambient Intelligence
【24h】

PSINES: Activity and Availability Prediction for Adaptive Ambient Intelligence

机译:Psines:适应性环境智能的活动和可用性预测

获取原文
获取原文并翻译 | 示例

摘要

Autonomy and adaptability are essential components of ambient intelligence. For example, in smart homes, proactive acting and occupants advising, adapted to current and future contexts of living, are essential to go beyond limitations of previous domotic services. To reach such autonomy and adaptability, ambient systems need to automatically grasp their users' ambient context. In particular, users' activities and availabilities for communication are valuable pieces of contextual information that can help such systems to adapt to user needs and behaviours. While significant research work exists on activity recognition in homes, less attention has been given to prediction of future activities, as well as to availability recognition and prediction in general. In this article, we investigate several Dynamic Bayesian Network (DBN) architectures for activity and availability prediction of occupants in homes, including our novel model, called Past Situations to predict the NExt Situation (PSINES). This predictive architecture utilizes context information, sensor event aggregations, and latent user cognitive states to accurately predict future home situations based on previous situations. We experimentally evaluate PSINES, as well as intermediate DBN architectures, on multiple state-of-the-art datasets, with prediction accuracies of up to 89.52% for activity and 82.08% for availability on the Orange4Home dataset.
机译:自主权和适应性是环境智能的基本组成部分。例如,在智能家庭中,主动代理和乘员建议,适应当前和未来的生活环境,对于超越以前的多元化服务的限制至关重要。为了实现这种自主权和适应性,环境系统需要自动掌握其用户的环境上下文。特别是,用户的活动和可用性用于通信是有价值的上下文信息,可以帮助这种系统适应用户需求和行为。虽然在家庭中的活动识别上存在显着的研究工作,但对未来活动的预测,较少的关注,以及一般的可用性识别和预测。在本文中,我们调查了几个动态贝叶斯网络(DBN)架构,用于家庭中的家庭中的乘员的活动和可用性预测,包括我们的小说模型,称为过去的情况,以预测下一个情况(Psines)。该预测架构利用上下文信息,传感器事件聚合和潜在用户认知状态,以基于先前的情况准确地预测未来的归属情况。我们通过在多个最先进的数据集上进行实验评估Psines,以及中间DBN架构,可用于活动的预测精度高达89.52%,并且在Orange4Home数据集上可用的82.08%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号