首页> 外文期刊>ACM transactions on autonomous and adaptive systems >Mitigating DoS Attacks Using Performance Model-Driven Adaptive Algorithms
【24h】

Mitigating DoS Attacks Using Performance Model-Driven Adaptive Algorithms

机译:使用性能模型驱动的自适应算法缓解DoS攻击

获取原文
获取原文并翻译 | 示例

摘要

Denial of Service (DoS) attacks overwhelm online services, preventing legitimate users from accessing a service, often with impact on revenue or consumer trust. Approaches exist to filter network-level attacks, but application-level attacks are harder to detect at the firewall. Filtering at this level can be computationally expensive and difficult to scale, while still producing false positives that block legitimate users. This article presents a model-based adaptive architecture and algorithm for detecting DoS attacks at the web application level and mitigating them. Using a performance model to predict the impact of arriving requests, a decision engine adaptively generates rules for filtering traffic and sending suspicious traffic for further review, where the end user is given the opportunity to demonstrate they are a legitimate user. If no legitimate user responds to the challenge, the request is dropped. Experiments performed on a scalable implementation demonstrate effective mitigation of attacks launched using a real-world DoS attack tool.
机译:拒绝服务(DoS)攻击使在线服务不堪重负,从而阻止合法用户访问服务,这通常会影响收入或消费者信任度。存在过滤网络级攻击的方法,但是在防火墙处很难检测到应用程序级攻击。在此级别进行过滤可能会导致计算量大且难以扩展,同时仍会产生误报,从而阻止合法用户。本文提出了一种基于模型的自适应体系结构和算法,用于在Web应用程序级别检测DoS攻击并加以缓解。决策引擎使用性能模型来预测到达请求的影响,从而自适应地生成用于过滤流量和发送可疑流量以供进一步检查的规则,最终用户可以借此机会证明自己是合法用户。如果没有合法用户响应质询,则该请求将被丢弃。在可扩展的实现方式上进行的实验证明,可以有效缓解使用真实DoS攻击工具发起的攻击。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号