首页> 外文期刊>ACM transactions on autonomous and adaptive systems >Prediction-Based Multi-Agent Reinforcement Learning in Inherently Non-Stationary Environments
【24h】

Prediction-Based Multi-Agent Reinforcement Learning in Inherently Non-Stationary Environments

机译:固有的非平稳环境中基于预测的多智能体强化学习

获取原文
获取原文并翻译 | 示例

摘要

Multi-agent reinforcement learning (MARL) is a widely researched technique for decentralised control in complex large-scale autonomous systems. Such systems often operate in environments that are continuously evolving and where agents' actions are non-deterministic, so called inherently non-stationary environments. When there are inconsistent results for agents acting on such an environment, learning and adapting is challenging. In this article, we propose P-MARL, an approach that integrates prediction and pattern change detection abilities into MARL and thus minimises the effect of non-stationarity in the environment. The environment is modelled as a time-series, with future estimates provided using prediction techniques. Learning is based on the predicted environment behaviour, with agents employing this knowledge to improve their performance in realtime. We illustrate P-MARL's performance in a real-world smart grid scenario, where the environment is heavily influenced by non-stationary power demand patterns from residential consumers. We evaluate P-MARL in three different situations, where agents' action decisions are independent, simultaneous, and sequential. Results show that all methods outperform traditional MARL, with sequential P-MARL achieving best results.
机译:多主体强化学习(MARL)是在复杂的大型自治系统中进行分散控制的一项广泛研究的技术。这样的系统通常在不断发展的环境中运行,并且代理的行为是不确定的,因此,所谓的固有非平稳环境。当行动者在这种环境下行动的结果不一致时,学习和适应就变得充满挑战。在本文中,我们提出了P-MARL,该方法将预测和模式更改检测功能集成到MARL中,从而最大程度地减少了环境中的非平稳性影响。将环境建模为时间序列,并使用预测技术提供未来的估计。学习是基于预测的环境行为,代理会使用此知识来实时改善其性能。我们将说明P-MARL在现实世界的智能电网场景中的性能,在该场景中,环境受到居民用户非固定电力需求模式的严重影响。我们在三种不同的情况下评估P-MARL,在这些情况下,代理的行动决策是独立,同时和顺序的。结果表明,所有方法均优于传统MARL,顺序P-MARL可获得最佳结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号