首页> 外文期刊>ACM transactions on Asian and low-resource language information processing >Transfer Learning Based Recurrent Neural Network Algorithm for Linguistic Analysis
【24h】

Transfer Learning Based Recurrent Neural Network Algorithm for Linguistic Analysis

机译:基于基于学习的语言分析的复发性神经网络算法

获取原文
获取原文并翻译 | 示例

摘要

Each language is a system of understanding and skills that allows language users to interact, express thoughts, hypotheses, feelings, wishes, and all that needs to be expressed. Linguistics is the research of these structures in all respects: the composition, usage, and sociology of language, in particular, are the core of linguistics. Machine Learning is the research area that allows machines to learn without being specifically scheduled. In linguistics, the design of writing is understood to be a foundation for many distinct company apps and probably the most useful if incorporated with machine learning methods. Research shows that besides text tagging and algorithm training, there are major problems in the field of Big Data. This article provides a collaborative effort (transfer learning integrated into Recurrent Neural Network) to analyze the distinct kinds of writing between the language's linear and non-computational sides, and to enhance granularity. The outcome demonstrates stronger incorporation of granularity into the language from both sides. Comparative results of machine learning algorithms are used to determine the best way to analyze and interpret the structure of the language.
机译:每种语言都是一个理解和技能系统,允许语言用户互动,表达思想,假设,感受,愿望和所有需要表达的信息。语言学是对所有方面的这些结构的研究:语言的组成,用法和社会学,特别是语言学的核心。机器学习是允许机器学习而不专门计划的研究区域。在语言学中,写作的设计被理解为许多独特公司应用程序的基础,如果与机器学习方法结合起来,可能是最有用的。研究表明,除了文本标记和算法培训外,大数据领域都有主要问题。本文提供了一种协作努力(转移学习集成到经常性神经网络中),以分析语言线性和非计算面之间的不同类型,并增强粒度。结果表明,更强大地将粒度纳入两侧的语言。机器学习算法的比较结果用于确定分析和解释语言结构的最佳方式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号