首页> 外文期刊>ACM transactions on Asian and low-resource language information processing >Dependency Parsing-based Entity Relation Extraction over Chinese Complex Text
【24h】

Dependency Parsing-based Entity Relation Extraction over Chinese Complex Text

机译:基于依赖性解析的实体关系提取中国复杂文本

获取原文
获取原文并翻译 | 示例

摘要

Open Relation Extraction (ORE) plays a significant role in the field of Information Extraction. It breaks the limitation that traditional relation extraction must pre-define relational types in the annotated corpus and specific domains restrictions, to realize the goal of extracting entities and the relation between entities in the open domain. However, with the increase of sentence complexity, the precision and recall of Entity Relation Extraction will be significantly reduced. To solve this problem, we present an unsupervised Clause_CORE method based on Chinese grammar and dependency parsing features. Clause_CORE is used for complex sentences processing, including decomposing complex sentence and dynamically complementing sentence components, which can reduce sentences complexity and maintain the integrity of sentences at the same time. Then, we perform dependency parsing for complete sentences and implement open entity relation extraction based on the model constructed by Chinese grammar rules. The experimental results show that the performance of Clause_CORE method is better than that of other advanced Chinese ORE systems on Wikipedia and Sina news datasets, which proves the correctness and effectiveness of the method. The results on mixed datasets of news data and encyclopedia data prove the generalization and portability of the method.
机译:开放关系提取(ORE)在信息提取领域发挥着重要作用。它破坏了传统关系提取必须在注释的语料库和特定域限制中预先定义关系类型的限制,以实现提取实体的目标和开放域中的实体之间的关系。然而,随着句子复杂性的增加,实体关系提取的精度和召回将显着降低。要解决此问题,我们介绍了一种基于中文语法和依赖解析功能的无人监督的Clase_core方法。 clase_core用于复杂的句子处理,包括分解复杂的句子和动态补充句子组件,可以减少句子复杂性并同时保持句子的完整性。然后,我们对完整的句子执行依赖性解析,并基于中文语法规则构建的模型实现开放实体关系提取。实验结果表明,Chare_core方法的性能优于Wikipedia和新浪新闻数据集的其他高级中国矿石系统,这证明了该方法的正确性和有效性。新闻数据和百科全书数据的混合数据集的结果证明了该方法的泛化和可移植性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号