首页> 外文期刊>ACM transactions on Asian and low-resource language information processing >Knowledge Discovery of News Text Based on Artificial Intelligence
【24h】

Knowledge Discovery of News Text Based on Artificial Intelligence

机译:基于人工智能的新闻文本知识发现

获取原文
获取原文并翻译 | 示例

摘要

The explosion of news text and the development of artificial intelligence provide a new opportunity and challenge to provide high-quality media monitoring service. In this article, we propose a semantic analysis approach based on the Latent Dirichlet Allocation (LDA) and Apriori algorithm, and we realize application to improve media monitoring reports by mining large-scale news text. First, we propose to use LDA model to mine news text topic words and reducing news dimensionality. Then, we propose to use Apriori algorithm to discovering the relationship of topic words. Finally, we discovery the relevance of news text topic words and show the intensity and dependency among topic words through drawing. This application can realize to extract the news topics and discover the correlation and dependency among news topics in mass news text. The results show that the method based on LDA and Apriori can help the media monitoring staff to better understand the hidden knowledge in the news text and improve the media analysis report.
机译:新闻文本的爆炸和人工智能的发展为提供了高质量的媒体监测服务提供了新的机会和挑战。在本文中,我们提出了一种基于潜在的Dirichlet分配(LDA)和APRIORI算法的语义分析方法,我们实现了应用于通过采矿大规模新闻文本来改进媒体监测报告。首先,我们建议使用LDA模型来挖掘新闻文本主题词并减少新闻维度。然后,我们建议使用Apriori算法来发现主题词的关系。最后,我们发现新闻文本主题单词的相关性,并通过绘图显示主题单词之间的强度和依赖性。此应用程序可以实现提取新闻主题并发现大众新闻文本中新闻主题之间的相关性和依赖性。结果表明,基于LDA和APRIORI的方法可以帮助媒体监测人员更好地了解新闻文本中的隐藏知识,并改善媒体分析报告。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号