首页> 外文期刊>ACM transactions on Asian language information processing >Condition-Transforming Variational Autoencoder for Generating Diverse Short Text Conversations
【24h】

Condition-Transforming Variational Autoencoder for Generating Diverse Short Text Conversations

机译:条件转换变形式自动码器,用于生成各种短文本对话

获取原文
获取原文并翻译 | 示例

摘要

In this article, conditional-transforming variational autoencoders (CTVAEs) are proposed for generating diverse short text conversations. In conditional variational autoencoders (CVAEs), the prior distribution of latent variable z follows a multivariate Gaussian distribution with mean and variance modulated by the input conditions. Previous work found that this distribution tended to become condition-independent in practical applications. Thus, this article designs CTVARs to enhance the influence of conditions in CVAEs. In a CTVAE model, the latent variable z is sampled by performing a non-linear transformation on the combination of the input conditions and the samples from a condition-independent prior distribution N(0.1). In our experiments using a Chinese Sina Weibo dataset, the CTVAE model derives z samples for decoding with better condition-dependency than that of the CVAE model. The earth mover's distance (EMD) between the distributions of the latent variable z at the training stage, and the testing stage is also reduced by using the CTVAE model. In subjective preference tests, our proposed CTVAE model performs significantly better than CVAE and sequence-to-sequence (Seq2Seq) models on generating diverse, informative, and topic-relevant responses.
机译:在本文中,提出了用于生成各种短文本对话的条件转换变形自动化器(CTVAES)。在有条件的变形自动化器(CVAES)中,潜在变量Z的先前分布遵循多功能高斯分布,其具有通过输入条件调制的平均值和方差。以前的工作发现,这种分布趋于在实际应用中变得无关。因此,本文设计了CTVAR,以增强CVAE中的条件的影响。在CTVAE模型中,通过在输入条件的组合和来自条件无关的先前分布N(0.1)的样本的组合上进行非线性变换来采样潜变量Z。在我们的实验中,使用中国新浪微博数据集,CTVAE模型得出具有比CVAE模型更好的条件依赖性解码的Z样本。通过使用CTVAE模型还减少了潜在变量Z的分布与测试阶段之间的地球移动器的距离(EMD)。在主观偏好测试中,我们提出的CTVAE模型比CVAE和序列 - 序列(SEQ2SEQ)模型显着更好地产生了不同的,信息和主题相关的响应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号