首页> 外文期刊>ACM transactions on Asian language information processing >Iterative Training of Unsupervised Neural and Statistical Machine Translation Systems
【24h】

Iterative Training of Unsupervised Neural and Statistical Machine Translation Systems

机译:无监督的神经和统计机器翻译系统迭代培训

获取原文
获取原文并翻译 | 示例

摘要

Recent work achieved remarkable results in training neural machine translation (NMT) systems in a fully unsupervised way, with new and dedicated architectures that only rely on monolingual corpora. However, previous work also showed that unsupervised statistical machine translation (USMT) performs better than unsupervised NMT (UNMT), especially for distant language pairs. To take advantage of the superiority of USMT over UNMT, and considering that SMT suffers from well-known limitations overcome by NMT, we propose to define UNMT as NMT trained with the supervision of synthetic parallel data generated by USMT. This way we can exploit USMT up to its limits while ultimately relying on full-fledged NMT models to generate translations. We show significant improvements in translation quality over previous work and also that further improvements can be obtained by alternatively and iteratively training USMT and UNMT. Without the need of a dedicated architecture for UNMT, our simple approach can straightforwardly benefit from any recent and future advances in supervised NMT. Our systems achieve a new state-of-the-art for unsupervised machine translation in all of our six translation tasks for five diverse language pairs, surpassing even supervised SMT or NMT in some tasks. Furthermore, our analysis shows how crucial the comparability between the monolingual corpora used for unsupervised training is in improving translation quality.
机译:最近的工作实现了以完全无人监督的方式训练神经机翻译(NMT)系统的显着成果,其中包含新的和专用架构,只依赖于单机语料库。然而,之前的工作也表明,无监督的统计机器翻译(USMT)比无监督的NMT(UNMT)更好,特别是对于遥远的语言对。为了利用UNMT的USMT的优越性,并考虑到SMT受到众所周知的众所周知的局限性,我们建议将UNOM定义为NMT,随着USMT产生的合成并行数据的监督训练。这样我们就可以利用USMT到最终依赖于全方位的NMT模型来生成翻译。我们对先前工作的翻译质量显着改善,并且还可以通过替代和迭代地培训USMT和UNVT来获得进一步的改进。如果没有针对联索特特的专用架构,我们的简单方法就会直接受益于监督NMT的任何最近和未来的进展。我们的系统在我们的六种翻译任务中实现了一个新的无人驾驶机器翻译,对于五种不同的语言对,在某些任务中超越了甚至监督的SMT或NMT。此外,我们的分析表明,用于无监督培训的单声道语料之间的可比性是如何提高翻译质量的关键。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号