首页> 外文期刊>ACM transactions on Asian language information processing >Speech-Driven End-to-End Language Discrimination toward Chinese Dialects
【24h】

Speech-Driven End-to-End Language Discrimination toward Chinese Dialects

机译:讲话驱动的端到端语言对中文方言的歧视

获取原文
获取原文并翻译 | 示例

摘要

Language discrimination among similar languages, varieties, and dialects is a challenging natural language processing task. The traditional text-driven focus leads to poor results. In this article, we explore the effectiveness of speech-driven features toward language discrimination among Chinese dialects. First, we systematically explore the appropriateness of speech-driven MFCC features toward CNN-based language discrimination. Then, we design an end-to-end speech recognition model based on HMM-DNN to predict Chinese dialect words. We adopt attention mechanism to extract the discriminative words related to different Chinese dialects. Finally, through a CNN, we combine the word-level embedding and the MFCC-based features. Evaluation of two benchmark Chinese dialect corpora shows the appropriateness and effectiveness of the proposed speech-driven approach to fine-grained Chinese dialect discrimination compared to the state-of-the-art methods.
机译:类似语言,品种和方言之间的语言歧视是一种具有挑战性的自然语言处理任务。传统的文本驱动的焦点会导致结果不佳。在本文中,我们探讨了语音驱动特征对汉语方言中语言歧视的有效性。首先,我们系统地探讨了语音驱动的MFCC功能对基于CNN的语言鉴别的适当性。然后,我们设计基于HMM-DNN的端到端语音识别模型,以预测汉语方言词。我们采用了注意机制,提取与不同汉语方言相关的歧视词。最后,通过CNN,我们结合了基于词级嵌入和基于MFCC的特征。评估两台基准中文方面的方言语料库显示了与最先进的方法相比,拟议的汉语方言歧视的拟议演讲方法的适当性和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号