首页> 外文期刊>ACM transactions on Asian and low-resource language information processing >Dynamic Updating of the Knowledge Base for a Large-Scale Question Answering System
【24h】

Dynamic Updating of the Knowledge Base for a Large-Scale Question Answering System

机译:用于大规模问题应答系统的知识库的动态更新

获取原文
获取原文并翻译 | 示例

摘要

Today, the knowledge base question answering (KB-QA) system is promising to achieve a large-scale high-quality reply in the e-commerce industry. However, there exist two major challenges to efficiently support large-scale KB-QA systems. On the one hand, it is difficult to serve tens of thousands of online stores (i.e., constrained by the tuning and deployment time), and it would perform poorly if the systems start without a sufficient number of chat records. On the other hand, current KB-QA systems cannot be updated in an efficient way due to the high cost of knowledge base (KB) updating. In this article, we propose an automatic learning scheme for KB-QA systems, called ALKB-QA, using a vector modeling method to address the preceding two main challenges. The ALKB-QA system provides online stores with basic KB templates that are suitable for many common occasions, and this feature enables the ability to deploy chatbots for a large number of online stores in a short time. Then, the KBs are further updated automatically to adapt to their own businesses (meet different specific needs), leading to increased reply accuracy. Our work has three main contributions. First, the proposed ALKB-QA system has a good business model in the e-commerce industry (serving tens of thousands of online stores with low cost), breaking the scalability limitations of existing KB-QA systems. Second, we assess the reply accuracy of the proposed ALKB-QA system using human evaluations, and the results show that it outperforms human annotation-base approaches. Third, we launched our ALKB-QA system as a real-world business application, and it supports tens of thousands of online stores.
机译:如今,知识库问题应答(KB-QA)制度令人享有希望在电子商务行业中实现大规模的高质量答复。然而,有效地支持大规模的KB-QA系统存在两个主要挑战。一方面,很难为数万的在线商店(即,由调谐和部署时间约束),如果系统开始没有足够数量的聊天记录,则会执行差劲。另一方面,由于知识库(KB)更新的高成本,目前的KB-QA系统无法以有效的方式更新。在本文中,我们向KB-QA系统提出了一种称为ALKB-QA的自动学习方案,使用矢量建模方法来解决前面的两个主要挑战。 ALKB-QA系统提供具有适合许多常见场合的基本KB模板的在线商店,并且此功能可以在短时间内部署大量在线商店的聊天设备。然后,kbs自动更新以适应自己的企业(满足不同的特定需求),从而提高回复准确性。我们的工作有三个主要贡献。首先,拟议的ALKB-QA系统在电子商务行业(服务成千上万的在线商店)具有良好的商业模式,可打破现有KB-QA系统的可扩展性限制。其次,我们评估了使用人类评估的提出的ALKB-QA系统的回复准确性,结果表明它优于人类注释基础方法。第三,我们推出了我们的ALKB-QA系统作为真实的商业应用,它支持成千上万的在线商店。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号