首页> 外文期刊>ACM transactions on Asian and low-resource language information processing >S~3-NET: SRU-Based Sentence and Self-Matching Networks for Machine Reading Comprehension
【24h】

S~3-NET: SRU-Based Sentence and Self-Matching Networks for Machine Reading Comprehension

机译:S〜3网络:基于SRU的句子和自匹配网络,用于机器阅读理解

获取原文
获取原文并翻译 | 示例

摘要

Machine reading comprehension question answering (MRC-QA) is the task of understanding the context of a given passage to find a correct answer within it. A passage is composed of several sentences; therefore, the length of the input sentence becomes longer, leading to diminished performance. In this article, we propose S~3-NET, which adds sentence-based encoding to solve this problem. S~3-NET, which is based on a simple recurrent unit architecture, is a deep learning model that solves the MRC-QA by applying matching network to sentence-level encoding. In addition, S~3-NET utilizes self-matching networks to compute attention weight for its own recurrent neural network sequences. We perform MRC-QA for the SQuAD dataset of English and MindsMRC dataset of Korean. The experimental results show that for SQuAD, the S~3-NET model proposed in this article produces 71.91% and 74.12% exact match and 81.02% and 82.34% F1 in single and ensemble models, respectively, and for MindsMRC, our model achieves 69.43% and 71.28% exact match and 81.53% and 82.77% F1 in single and ensemble models, respectively.
机译:机器阅读理解问题应答(MRC-QA)是理解给定段落的背景下的任务,以找到其中的正确答案。一段段落由几个句子组成;因此,输入句子的长度变长,导致性能降低。在本文中,我们提出了S〜3栏,这增加了基于句子的编码来解决这个问题。 S〜3-net基于简单​​的复发单元架构,是一种深入学习模型,通过将匹配的网络应用于句子级编码来解决MRC-QA的深度学习模型。此外,S〜3栏利用自匹配网络来计算其自身的经常性神经网络序列的注意力。我们为韩语的英语和Mindsmrc DataSet的Squad数据集执行MRC-QA。实验结果表明,对于小队,本文提出的S〜3净型分别产生71.91%和74.12%的精确匹配,分别为单一和集合模型和82.34%和82.34%的F1,我们的型号达到69.43单一和合奏模型分别精确匹配%和71.28%和81.53%和82.77%F1。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号