首页> 外文期刊>ACM transactions on Asian language information processing >Discriminative Machine Translation Using Global Lexical Selection
【24h】

Discriminative Machine Translation Using Global Lexical Selection

机译:使用全局词法选择的区分机器翻译

获取原文
获取原文并翻译 | 示例

摘要

Statistical phrase-based machine translation models crucially rely on word alignments. The search for word-alignments assumes a model of word locality between source and target languages that is violated in starkly different word-order languages such as English-Hindi. In this article, we present models that decouple the steps of lexical selection and lexical reordering with the aim of minimizing the role of word-alignment in machine translation. Indian languages are morphologically rich and have relatively free-word order where the grammatical role of content words is largely determined by their case markers and not just by their positions in the sentence. Hence, lexical selection plays a far greater role than lexical reordering. For lexical selection, we investigate models that take the entire source sentence into account and evaluate their performance for English-Hindi translation in a tourism domain.
机译:基于统计短语的机器翻译模型至关重要地依赖于单词对齐。搜索单词对齐方式时,假设源语言和目标语言之间存在单词局部性的模型,而在英语-印地语等截然不同的单词顺序语言中却遭到违反。在本文中,我们提出了将词汇选择和词汇重排步骤解耦的模型,目的是最大程度地减少单词对齐在机器翻译中的作用。印度语言在形态上很丰富,并且具有相对自由的单词顺序,其中,内容词的语法作用主要取决于其大小写标记,而不仅取决于其在句子中的位置。因此,词法选择比词法重排起更大的作用。对于词汇选择,我们研究了将整个源句都考虑在内的模型,并评估了它们在旅游领域中英语-印地语翻译中的表现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号