首页> 外文期刊>ACM transactions on Asian language information processing >Articulation-Disordered Speech Recognition Using Speaker-Adaptive Acoustic Models and Personalized Articulation Patterns
【24h】

Articulation-Disordered Speech Recognition Using Speaker-Adaptive Acoustic Models and Personalized Articulation Patterns

机译:使用说话者自适应声学模型和个性化发音模式的发音混乱语音识别

获取原文
获取原文并翻译 | 示例

摘要

This article presents a novel approach to speaker-adaptive recognition of speech from articulation-disordered speakers without a large amount of adaptation data. An unsupervised, incremental adaptation method is adopted for personalized model adaptation based on the recognized syllables with high recognition confidence from an automatic speech recognition (ASR) system. For articulation pattern discovery, the manually transcribed syllables and the corresponding recognized syllables are associated with each other using articulatory features. The Apriori algorithm is applied to discover the articulation patterns in the corpus, which are then used to construct a personalized pronunciation dictionary to improve the recognition accuracy of the ASR. The experimental results indicate that the proposed adaptation method achieves a syllable error rate reduction of 6.1%, outperforming the conventional adaptation methods that have a syllable error rate reduction of 3.8%. In addition, an average syllable error rate reduction of 5.04% is obtained for the ASR using the expanded pronunciation dictionary.
机译:本文提出了一种新颖的方法,可以在没有大量自适应数据的情况下,从发音混乱的说话人中识别说话人的语音。在自动语音识别(ASR)系统中,基于已识别的音节,采用了无监督的增量自适应方法来进行个性化模型自适应。对于发音模式发现,使用发音特征将手动转录的音节和相应的识别音节彼此关联。应用Apriori算法发现语料库中的发音模式,然后将其用于构建个性化发音词典以提高ASR的识别精度。实验结果表明,所提出的自适应方法的音节错误率降低了6.1%,优于传统的自适应方法的音节错误率降低了3.8%。此外,使用扩展的发音词典,ASR的平均音节错误率降低了5.04%。

著录项

  • 来源
  • 作者单位

    Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan;

    Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan;

    Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    languages;

    机译:语言;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号