首页> 外文期刊>ACM transactions on Asian language information processing >Pronunciation Variants Prediction Method to Detect Mispronunciations by Korean Learners of English
【24h】

Pronunciation Variants Prediction Method to Detect Mispronunciations by Korean Learners of English

机译:用于检测韩语英语学习者误音的发音变体预测方法

获取原文
获取原文并翻译 | 示例

摘要

This article presents an approach to nonnative pronunciation variants modeling and prediction. The pronunciation variants prediction method was developed by generalized transformation-based error-driven learning (GTBL). The modified goodness of pronunciation (GOP) score was applied to effective mispronunciation detection using logistic regression machine learning under the pronunciation variants prediction. English-read speech data uttered by Korean-speaking learners of English were collected, then pronunciation variation knowledge was extracted from the differences between the canonical phonemes and the actual phonemes of the speech data. With this knowledge, an error-driven learning approach was designed that automatically learns phoneme variation rules from phoneme-level transcriptions. The learned rules generate an extended recognition network to detect mispronunciations. Three different mispronunciation detection methods were tested including our logistic regression machine learning method with modified GOP scores and mispronunciation preference features; all three methods yielded significant improvement in predictions of pronunciation variants, and our logistic regression method showed the best performance.
机译:本文介绍了一种非母语发音变体的建模和预测方法。通过基于广义变换的错误驱动学习(GTBL)开发了语音变体预测方法。在语音变体预测下,使用逻辑回归机器学习将修改后的发音善良(GOP)分数应用于有效的发音错误检测。收集由韩语英语学习者说出的英语阅读语音数据,然后从语音数据的标准音素与实际音素之间的差异中提取语音变化知识。利用这种知识,设计了一种错误驱动的学习方法,该方法可以从音素级别的转录中自动学习音素变化规则。学习到的规则会生成扩展的识别网络,以检测错误的发音。测试了三种不同的错误发音检测方法,包括我们的具有改进的GOP得分和错误发音偏爱特征的逻辑回归机器学习方法;这三种方法在发音变体的预测上均取得了显着改进,而我们的逻辑回归方法显示出最佳的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号