首页> 外文期刊>ACM transactions on Asian language information processing >Improved Discourse Parsing with Two-Step Neural Transition-Based Model
【24h】

Improved Discourse Parsing with Two-Step Neural Transition-Based Model

机译:基于两步神经过渡的模型的改进语篇解析

获取原文
获取原文并翻译 | 示例

摘要

Discourse parsing aims to identify structures and relationships between different discourse units. Most existing approaches analyze a whole discourse at once, which often fails in distinguishing long-span relations and properly representing discourse units. In this article, we propose a novel parsing model to analyze discourse in a two-step fashion with different feature representations to characterize intra sentence and inter sentence discourse structures, respectively. Our model works in a transition-based framework and benefits from a stack long short-term memory neural network model. Experiments on benchmark tree banks show that our method outperforms traditional 1-step parsing methods in both English and Chinese.
机译:语篇解析旨在识别不同语篇单元之间的结构和关系。现有的大多数方法都可以一次分析整个话语,而这往往无法区分长期关系并正确代表话语单元。在本文中,我们提出了一种新颖的解析模型,以两步方式分析话语,具有不同的特征表示,分别描述了句子内和句子间的话语结构。我们的模型在基于过渡的框架中工作,并受益于堆栈长短期记忆神经网络模型。在基准树库上进行的实验表明,我们的方法在英语和汉语方面都优于传统的1步解析方法。

著录项

  • 来源
  • 作者单位

    Peking Univ, Inst Comp Sci & Technol, 128th Zhongguancun North St, Beijing 100080, Peoples R China;

    Peking Univ, Inst Comp Sci & Technol, 128th Zhongguancun North St, Beijing 100080, Peoples R China;

    Peking Univ, Inst Comp Sci & Technol, 128th Zhongguancun North St, Beijing 100080, Peoples R China;

    Peking Univ, Inst Comp Sci & Technol, 128th Zhongguancun North St, Beijing 100080, Peoples R China;

    Inst Sci & Tech Informat China, 15th Fuxing Rd, Beijing 100038, Peoples R China;

    Peking Univ, Inst Comp Sci & Technol, 128th Zhongguancun North St, Beijing 100080, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Discourse parsing; dependency parsing; transition-based system; LSTM;

    机译:语篇解析;依赖解析;基于过渡的系统;LSTM;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号