首页> 外文期刊>ACM transactions on Asian language information processing >Explicitly Modeling Word Translations in Neural Machine Translation
【24h】

Explicitly Modeling Word Translations in Neural Machine Translation

机译:在神经机器翻译中显式建模单词翻译

获取原文
获取原文并翻译 | 示例

摘要

In this article, we show that word translations can be explicitly incorporated into NMT effectively to avoid wrong translations. Specifically, we propose three cross-lingual encoders to explicitly incorporate word translations into NMT: (1) Factored encoder, which encodes a word and its translation in a vertical way; (2) Gated encoder, which uses a gated mechanism to selectively control the amount of word translations moving forward; and (3) Mixed encoder, which stitchingly learns a word and its translation annotations over sequences where words and their translations are alternatively mixed. Besides, we first use a simple word dictionary approach and then a word sense disambiguation (WSD) approach to effectively model the word context for better word translation. Experimentation on Chinese-to-English translation demonstrates that all proposed encoders are able to improve the translation accuracy for both traditional RNN-based NMT and recent self-attention-based NMT (hereafter referred to as Transformer). Specifically, Mixed encoder yields the most significant improvement of 2.0 in BLEU on the RNN-based NMT, while Gated encoder improves 1.2 in BLEU on Transformer. This indicates the usefulness of an WSD approach in modeling word context for better word translation. This also indicates the effectiveness of our proposed cross-lingual encoders in explicitly modeling word translations to avoid wrong translations in NMT. Finally, we discuss in depth how word translations benefit different NMT frameworks from several perspectives.
机译:在本文中,我们证明了单词翻译可以有效地明确地合并到NMT中,以避免错误的翻译。具体来说,我们提出了三种跨语言编码器,以将单词翻译明确地合并到NMT中:(1)因子编码器,它以垂直方式对单词及其翻译进行编码; (2)门控编码器,它使用门控机制来选择性地控制向前移动的单词翻译量; (3)混合编码器,其在单词和它们的翻译被交替混合的序列上拼接地学习单词和它的翻译注释。此外,我们首先使用简单的单词词典方法,然后使用词义消歧(WSD)方法对单词上下文进行有效建模,以实现更好的单词翻译。汉英翻译实验表明,所有提出的编码器均能够提高传统基于RNN的NMT和最近基于自注意的NMT(以下称为Transformer)的翻译精度。具体而言,混合编码器在基于RNN的NMT上的BLEU方面最显着提高了2.0,而门控编码器在Transformer上的BLEU上提高了1.2。这表明WSD方法在对单词上下文进行建模以更好地进行单词翻译方面很有用。这也表明我们提出的跨语言编码器在显式建模单词翻译以避免NMT错误翻译方面的有效性。最后,我们从几个角度深入讨论单词翻译如何使不同的NMT框架受益。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号