首页> 外文期刊>ACM transactions on accessible computing >Drop-Down Menu Widget Identification Using HTML Structure Changes Classification
【24h】

Drop-Down Menu Widget Identification Using HTML Structure Changes Classification

机译:使用HTML结构更改分类的下拉菜单小部件标识

获取原文
获取原文并翻译 | 示例

摘要

Widgets have been deployed in rich internet applications for more than 10 years. However, many of the widgets currently available on the web do not implement current accessibility design solutions standardized in ARIA (Accessible Rich Internet Applications) specification, hence are not accessible to disabled users. This article sets out an approach for automatically identifying widgets on the basis of machine-learning algorithms and the classification of mutation records; it is an HTML5 technology that logs all changes that occur in the structure of a web application. Automatic widget identification is an essential component for the elaboration of automatic ARIA evaluation and adaptation strategies. Thus, the aim of this article is to take steps toward easing the software-engineering process of ARIA widgets. The proposed approach focuses on the identification of drop-down menu widgets. An experiment with real-world web applications was conducted and the results showed evidence that this approach is capable of identifying these widgets and can outperform previous state-of-the-art techniques based on an F-measure analysis conducted during the experiment.
机译:小部件已在富Internet应用程序中部署了10多年。但是,当前在Web上可用的许多小部件未实现ARIA(可访问的丰富Internet应用程序)规范中标准化的当前可访问性设计解决方案,因此,残障用户无法访问。本文提出了一种基于机器学习算法和变异记录分类自动识别控件的方法。它是一种HTML5技术,用于记录Web应用程序结构中发生的所有更改。自动小部件识别是制定自动ARIA评估和调整策略的重要组成部分。因此,本文的目的是采取步骤简化ARIA小部件的软件工程过程。所提出的方法着重于下拉菜单小部件的识别。进行了真实世界Web应用程序的实验,结果表明该方法能够识别这些小部件,并且基于实验过程中进行的F量度分析,其性能优于以前的最新技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号