【24h】

Keyboard Acoustic Emanations Revisited

机译:再谈键盘发声

获取原文
获取原文并翻译 | 示例

摘要

We examine the problem of keyboard acoustic emanations. We present a novel attack taking as input a 10-minute sound recording of a user typing English text using a keyboard and recovering up to 96% of typed characters. There is no need for training recordings labeled with the corresponding clear text. A recognizer bootstrapped from a 10-minute sound recording can even recognize random text such as passwords: In our experiments, 90% of 5-character random passwords using only letters can be generated in fewer than 20 attempts by an adversary; 80% of 10-character passwords can be generated in fewer than 75 attempts by an adversary. In the attack, we use the statistical constraints of the underlying content, English language, to reconstruct text from sound recordings without knowing the corresponding clear text. The attack incorporates a combination of standard machine learning and speech recognition techniques, including cepstrum features, Hidden Markov Models, linear classification, and feedback-based incremental learning.
机译:我们研究了键盘发声的问题。我们提出了一种新颖的攻击方式,将用户使用键盘输入英语文本的10分钟录音作为输入,并恢复了多达96%的键入字符。不需要训练记录带有相应明文的记录。从10分钟的录音启动的识别器甚至可以识别诸如密码之类的随机文本:在我们的实验中,对手仅用不到20次尝试就可以生成90%的仅使用字母的5个字符的随机密码;攻击者可以少于75次尝试生成80%的10个字符的密码。在攻击中,我们使用基础内容(英语)的统计约束来从录音中重建文本,而无需知道相应的明文。攻击结合了标准机器学习和语音识别技术的组合,包括倒谱特征,隐马尔可夫模型,线性分类和基于反馈的增量学习。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号