首页> 外文期刊>ACM Transaction on Information and System Security >Pulse-Response: Exploring Human Body Impedance for Biometric Recognition
【24h】

Pulse-Response: Exploring Human Body Impedance for Biometric Recognition

机译:脉冲响应:探索人体阻抗以进行生物识别

获取原文
获取原文并翻译 | 示例

摘要

Biometric characteristics are often used as a supplementary component in user authentication and identification schemes. Many biometric traits, both physiological and behavioral, offering a wider range of security and stability, have been explored. We propose a new physiological trait based on the human body's electrical response to a square pulse signal, called pulse-response, and analyze how this biometric characteristic can be used to enhance security in the context of two example applications: (1) an additional authentication mechanism in PIN entry systems and (2) a means of continuous authentication on a secure terminal. The pulse-response biometric recognition is effective because each human body exhibits a unique response to a signal pulse applied at the palm of one hand and measured at the palm of the other. This identification mechanism integrates well with other established methods and could offer an additional layer of security, either on a continuous basis or at log-in time. We build a proof-of-concept prototype and perform experiments to assess the feasibility of pulse-response for biometric authentication. The results are very encouraging, achieving an equal error rate of 2% over a static dataset and 9% over a dataset with samples taken over several weeks. We also quantize resistance to attack by estimating individual worst-case probabilities for zero-effort impersonation in different experiments.
机译:生物特征通常被用作用户身份验证和标识方案中的补充组件。已探究了许多生物特征,包括生理和行为特征,可提供更广泛的安全性和稳定性。我们基于人体对方形脉冲信号的电响应提出一种新的生理特征,称为脉冲响​​应,并分析如何在两个示例应用程序的背景下使用这种生物特征来增强安全性:(1)附加身份验证PIN输入系统中的机制和(2)在安全终端上进行连续认证的方法。脉冲响应生物特征识别是有效的,因为每个人体对施加在一只手的手掌上并在另一只手的手掌上测量到的信号脉冲都表现出独特的响应。此标识机制与其他已建立的方法很好地集成在一起,并且可以在连续基础上或在登录时提供附加的安全层。我们建立了概念验证的原型,并进行了实验,以评估脉冲响应进行生物特征认证的可行性。结果令人鼓舞,静态数据集的错误率等于2%,抽样数周的数据集的错误率达到9%。我们还通过估计不同实验中零努力模仿的个别最坏情况概率来量化对攻击的抵抗力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号