首页> 外文期刊>ACM Computing Surveys >Parallel Optimal Pairwise Biological Sequence Comparison: Algorithms, Platforms, and Classification
【24h】

Parallel Optimal Pairwise Biological Sequence Comparison: Algorithms, Platforms, and Classification

机译:并行最佳成对生物序列比较:算法,平台和分类

获取原文
获取原文并翻译 | 示例

摘要

Many bioinformatics applications, such as the optimal pairwise biological sequence comparison, demand a great quantity of computing resource, thus are excellent candidates to run in high-performance computing (HPC) platforms. In the last two decades, a large number of HPC-based solutions were proposed for this problem that run in different platforms, targeting different types of comparisons with slightly different algorithms and making the comparative analysis of these approaches very difficult. This article proposes a classification of parallel optimal pairwise sequence comparison solutions, in order to highlight their main characteristics in a unifiedway. We then discuss several HPC-based solutions, including clusters ofmulticores and accelerators such as Cell Broadband Engines (CellBEs), Field-Programmable Gate Arrays (FPGAs), Graphics Processing Units (GPUs) and Intel Xeon Phi, as well as hybrid solutions, which combine two or more platforms, providing the actual landscape of the main proposals in this area. Finally, we present open questions and perspectives in this research field.
机译:许多生物信息学应用程序,例如最佳的成对生物序列比较,需要大量的计算资源,因此是在高性能计算(HPC)平台上运行的极佳候选者。在过去的二十年中,针对此问题,提出了许多基于HPC的解决方案,这些解决方案运行在不同的平台上,以稍有不同的算法针对不同类型的比较,并使这些方法的比较分析非常困难。本文提出了一种并行的最优配对序列比较解决方案的分类,以统一地突出它们的主要特征。然后,我们讨论几种基于HPC的解决方案,包括多核和加速器的集群,例如单元宽带引擎(CellBEs),现场可编程门阵列(FPGA),图形处理单元(GPU)和Intel Xeon Phi,以及混合解决方案。结合两个或多个平台,提供该领域主要建议的实际情况。最后,我们提出了该研究领域的开放性问题和观点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号