首页> 美国卫生研究院文献>Wiley-Blackwell Online Open >Genetic dissection of dopaminergic and noradrenergic contributions to catecholaminergic tracts in early larval zebrafish
【2h】

Genetic dissection of dopaminergic and noradrenergic contributions to catecholaminergic tracts in early larval zebrafish

机译:多巴胺能和去甲肾上腺素能对幼虫斑马鱼儿茶酚胺能束的遗传解剖

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The catecholamines dopamine and noradrenaline provide some of the major neuromodulatory systems with far-ranging projections in the brain and spinal cord of vertebrates. However, development of these complex systems is only partially understood. Zebrafish provide an excellent model for genetic analysis of neuronal specification and axonal projections in vertebrates. Here, we analyze the ontogeny of the catecholaminergic projections in zebrafish embryos and larvae up to the fifth day of development and establish the basic scaffold of catecholaminergic connectivity. The earliest dopaminergic diencephalospinal projections do not navigate along the zebrafish primary neuron axonal scaffold but establish their own tracts at defined ventrolateral positions. By using genetic tools, we study quantitative and qualitative contributions of noradrenergic and defined dopaminergic groups to the catecholaminergic scaffold. Suppression of Tfap2a activity allows us to eliminate noradrenergic contributions, and depletion of Otp activity deletes mammalian A11-like Otp-dependent ventral diencephalic dopaminergic groups. This analysis reveals a predominant contribution of Otp-dependent dopaminergic neurons to diencephalospinal as well as hypothalamic catecholaminergic tracts. In contrast, noradrenergic projections make only a minor contribution to hindbrain and spinal catecholaminergic tracts. Furthermore, we can demonstrate that, in zebrafish larvae, ascending catecholaminergic projections to the telencephalon are generated exclusively by Otp-dependent diencephalic dopaminergic neurons as well as by hindbrain noradrenergic groups. Our data reveal the Otp-dependent A11-type dopaminergic neurons as the by far most prominent dopaminergic system in larval zebrafish. These findings are consistent with a hypothesis that Otp-dependent dopaminergic neurons establish the major modulatory system for somatomotor and somatosensory circuits in larval fish. J. Comp. Neurol. 518:439–458, 2010. © 2009 Wiley-Liss, Inc.
机译:儿茶酚胺多巴胺和去甲肾上腺素提供了一些主要的神经调节系统,在脊椎动物的大脑和脊髓中具有广泛的投射。但是,这些复杂系统的开发仅得到部分了解。斑马鱼为脊椎动物神经元特征和轴突投射的遗传分析提供了一个极好的模型。在这里,我们分析了斑马鱼胚胎和幼虫中发育至第五天的儿茶酚胺能投射的个体发育,并建立了儿茶酚胺能连通性的基本支架。最早的多巴胺能双脑脊髓投射不沿着斑马鱼的初级神经元轴突支架行进,而是在确定的腹侧位置建立自己的束带。通过使用遗传工具,我们研究了去甲肾上腺素能和多巴胺能组对儿茶酚胺能支架的定量和定性贡献。 Tfap2a活性的抑制使我们能够消除去甲肾上腺素的贡献,而Otp活性的消耗则删除了哺乳动物的A11样Otp依赖性腹侧双脑多巴胺能组。该分析揭示了Otp依赖的多巴胺能神经元对脑脊椎以及下丘脑儿茶酚胺能道的主要贡献。相比之下,去甲肾上腺素能投射对后脑和儿茶酚胺能级束的贡献很小。此外,我们可以证明,在斑马鱼的幼虫中,儿茶酚胺能对端脑的上升投射仅由Otp依赖性二脑多巴胺能神经元以及后脑去甲肾上腺素能产生。我们的数据显示,Otp依赖的A11型多巴胺能神经元是迄今为止幼虫斑马鱼中最突出的多巴胺能系统。这些发现与一个假设有关,即Otp依赖性多巴胺能神经元建立了幼体鱼体动和体感回路的主要调节系统。 J.比较神经元。 518:439–458,2010。©2009 Wiley-Liss,Inc.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号