首页> 美国卫生研究院文献>Wiley-Blackwell Online Open >A male gametocyte osmiophilic body and microgamete surface protein of the rodent malaria parasite Plasmodium yoelii (PyMiGS) plays a critical role in male osmiophilic body formation and exflagellation
【2h】

A male gametocyte osmiophilic body and microgamete surface protein of the rodent malaria parasite Plasmodium yoelii (PyMiGS) plays a critical role in male osmiophilic body formation and exflagellation

机译:啮齿动物疟疾寄生虫疟原虫(PyMiGS)的雄配子细胞渗透亲和体和微配子表面蛋白在雄性渗透亲和体的形成和脱发中起关键作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Anopheles mosquitoes transmit Plasmodium parasites of mammals, including the species that cause malaria in humans. Malaria pathology is caused by rapid multiplication of parasites in asexual intraerythrocytic cycles. Sexual stage parasites are also produced during the intraerythrocytic cycle and are ingested by the mosquito, initiating gametogenesis and subsequent sporogonic stage development. Here, we present a Plasmodium protein, termed microgamete surface protein (MiGS), which has an important role in male gametocyte osmiophilic body (MOB) formation and microgamete function. MiGS is expressed exclusively in male gametocytes and microgametes, in which MiGS localises to the MOB and microgamete surface. Targeted gene disruption of MiGS in a rodent malaria parasite Plasmodium yoelii 17XNL generated knockout parasites (ΔPyMiGS) that proliferate normally in erythrocytes and form male and female gametocytes. The number of MOB in male gametocyte cytoplasm is markedly reduced and the exflagellation of microgametes is impaired in ΔPyMiGS. In addition, anti‐PyMiGS antibody severely blocked the parasite development in the Anopheles stephensi mosquito. MiGS might thus be a potential novel transmission‐blocking vaccine target candidate.
机译:蚊按蚊传播哺乳动物的疟原虫寄生虫,包括导致人类疟疾的物种。疟疾病理是由于无性红细胞内循环中寄生虫的快速繁殖所致。性期寄生虫也在红细胞内循环期间产生,并被蚊子摄入,开始配子发生和随后的孢子形成阶段。在这里,我们介绍了一种称为小配子表面蛋白(MiGS)的疟原虫蛋白,它在雄性配子细胞同嗜性体(MOB)的形成和配子功能中具有重要作用。 MiGS仅在雄配子细胞和微配子中表达,其中MiGS定位于MOB和微配子表面。啮齿动物疟原虫约氏疟原虫17XNL中MiGS的靶向基因破坏产生敲除寄生虫(ΔPyMiGS),该敲除寄生虫通常在红细胞中增殖并形成雄性和雌性配子细胞。雄性配子体细胞质中的MOB数量明显减少,并且在ΔPyMiGS中微配子的外胚层受损。此外,抗PyMiGS抗体严重阻断了斯蒂芬按蚊(Anopheles stephensi)蚊子中的寄生虫发育。因此,MiGS可能是潜在的新型阻断传播疫苗的靶标候选物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号