首页> 美国卫生研究院文献>Springer Open Choice >Application of density estimation algorithms in analyzing co-morbidities of migraine
【2h】

Application of density estimation algorithms in analyzing co-morbidities of migraine

机译:密度估计算法在偏头痛合并症分析中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this study, we will propose a density estimation based data analysis procedure to investigate the co-morbid associations between migraine and the suspected diseases. The primary objective of this study has aimed to develop a novel analysis procedure that can discover insightful knowledge from large medical databases. The entire analysis procedure consists of two stages. During the first stage, a kernel density estimation algorithm named relaxed variable kernel density estimation (RVKDE) is invoked to identify the samples of interest. Then, in the second stage, a density estimation algorithm based on generalized Gaussian components and named G2DE is invoked to provide a summarized description of the distribution. The results obtained by applying the proposed two-staged procedure to analyze co-morbidities of migraine revealed that the proposed procedure could effectively identify a number of clusters of samples with distinctive characteristics. The results further revealed that the distinctive characteristics of the clusters extracted by the proposed procedure were in conformity with the observations reported in recently published articles. Accordingly, it is conceivable that the proposed analysis procedure can be exploited to provide valuable clues of pathogenesis and facilitate development of proper treatment strategies.Electronic supplementary materialThe online version of this article (doi:10.1007/s13721-013-0028-8) contains supplementary material, which is available to authorized users.
机译:在这项研究中,我们将提出一种基于密度估计的数据分析程序,以研究偏头痛与可疑疾病之间的共病关联。这项研究的主要目的旨在开发一种新颖的分析程序,可以从大型医学数据库中发现有见地的知识。整个分析过程包括两个阶段。在第一阶段,调用称为松弛变量内核密度估计(RVKDE)的内核密度估计算法来识别目标样本。然后,在第二阶段,调用基于广义高斯分量和名为G 2 DE的密度估计算法,以提供对该分布的概括描述。通过应用拟议的两阶段程序分析偏头痛的合并症所获得的结果表明,拟议的程序可以有效地识别出许多具有独特特征的样本。结果进一步表明,通过提出的方法提取的簇的独特特征与最近发表的文章中报道的观察结果一致。因此,可以设想,可以利用所提出的分析程序来提供有价值的发病机理线索,并促进适当治疗策略的发展。电子补充材料本文的在线版本(doi:10.1007 / s13721-013-0028-8)包含补充信息资料,可供授权用户使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号