首页> 外文期刊>Reliability Engineering & System Safety >An elaborate algorithm for analyzing the Borgonovo moment-independent sensitivity by replacing the probability density function estimation with the probability estimation
【24h】

An elaborate algorithm for analyzing the Borgonovo moment-independent sensitivity by replacing the probability density function estimation with the probability estimation

机译:通过用概率估计值替换概率密度函数估计值来分析与Borgonovo矩无关的灵敏度的精细算法

获取原文
获取原文并翻译 | 示例

摘要

Borgonovo moment-independent sensitivity index (BMSI) was proposed to measure the sensitivity of model inputs according to the whole distribution of model output not only a specific moment. The main computational difficulty of the BMSI is to estimate the unconditional probability density function (PDF) and the conditional PDF of the model output. Generally, the estimation of cumulative distribution function (CDF) is easier than that of the PDF, but CDF-based method needs to calculate the extreme points of the differences between the unconditional PDF and the conditional PDF of model output. In addition, the computational cost of the existing CDF-based method also depends on the dimensionality of model inputs. To avoid these accessional computations, this paper derives a new formula by innovatively combining the law of total expectation in the successive intervals without overlapping and the Bayes theorem. The proposed new formula can obtain every input's BMSI only by one group of unconditional model inputs-output samples and does not need to estimate the PDF and the extreme points, which greatly reduces the computational difficulty of the BMSI by replacing the PDF estimation with the probability estimation. Four case studies are analyzed, and the results demonstrate the effectiveness of the proposed algorithm for estimating the BMSI.
机译:提出了基于Borgonovo矩的独立于灵敏度的指标(BMSI)来根据模型输出的整个分布来测量模型输入的灵敏度,而不仅仅是特定的矩。 BMSI的主要计算困难是估计模型输出的无条件概率密度函数(PDF)和条件PDF。通常,累积分布函数(CDF)的估计比PDF容易,但是基于CDF的方法需要计算模型输出的无条件PDF和条件PDF之间差异的极值。此外,现有基于CDF的方法的计算成本还取决于模型输入的维数。为了避免这些附加计算,本文通过创新地组合了不重叠的连续区间的总期望定律和贝叶斯定理,得出了一个新公式。所提出的新公式仅需通过一组无条件的模型输入输出样本即可获得每个输入的BMSI,而无需估计PDF和极值点,从而通过用概率替换PDF估计来大大降低BMSI的计算难度。估计。分析了四个案例研究,结果证明了该算法在估计BMSI方面的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号