首页> 美国卫生研究院文献>Springer Open Choice >A novel framework for intelligent surveillance system based on abnormal human activity detection in academic environments
【2h】

A novel framework for intelligent surveillance system based on abnormal human activity detection in academic environments

机译:学术环境中基于异常人类活动检测的新型智能监控系统框架

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Abnormal activity detection plays a crucial role in surveillance applications, and a surveillance system that can perform robustly in an academic environment has become an urgent need. In this paper, we propose a novel framework for an automatic real-time video-based surveillance system which can simultaneously perform the tracking, semantic scene learning, and abnormality detection in an academic environment. To develop our system, we have divided the work into three phases: preprocessing phase, abnormal human activity detection phase, and content-based image retrieval phase. For motion object detection, we used the temporal-differencing algorithm and then located the motions region using the Gaussian function. Furthermore, the shape model based on OMEGA equation was used as a filter for the detected objects (i.e., human and non-human). For object activities analysis, we evaluated and analyzed the human activities of the detected objects. We classified the human activities into two groups: normal activities and abnormal activities based on the support vector machine. The machine then provides an automatic warning in case of abnormal human activities. It also embeds a method to retrieve the detected object from the database for object recognition and identification using content-based image retrieval. Finally, a software-based simulation using MATLAB was performed and the results of the conducted experiments showed an excellent surveillance system that can simultaneously perform the tracking, semantic scene learning, and abnormality detection in an academic environment with no human intervention.
机译:异常活动检测在监视应用程序中起着至关重要的作用,迫切需要一种在学术环境中具有良好性能的监视系统。在本文中,我们为基于视频的自动实时监视系统提出了一种新颖的框架,该框架可以在学术环境中同时执行跟踪,语义场景学习和异常检测。为了开发我们的系统,我们将工作分为三个阶段:预处理阶段,异常人类活动检测阶段和基于内容的图像检索阶段。对于运动物体检测,我们使用时间差分算法,然后使用高斯函数定位运动区域。此外,基于OMEGA方程式的形状模型被用作针对检测到的物体(即人和非人)的过滤器。对于对象活动分析,我们评估并分析了检测到的对象的人类活动。基于支持向量机,我们将人类活动分为正常活动和异常活动两类。然后,机器会在人为活动异常的情况下提供自动警告。它还嵌入了一种方法,可使用基于内容的图像检索从数据库中检索检测到的物体,以进行物体识别和识别。最后,使用MATLAB进行了基于软件的仿真,所进行的实验结果表明,一个出色的监视系统可以在学术环境中同时进行跟踪,语义场景学习和异常检测,而无需人工干预。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号