首页> 美国卫生研究院文献>Springer Open Choice >Sentiment analysis of political communication: combining a dictionary approach with crowdcoding
【2h】

Sentiment analysis of political communication: combining a dictionary approach with crowdcoding

机译:政治沟通的情感分析:结合词典方法与众码

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Sentiment is important in studies of news values, public opinion, negative campaigning or political polarization and an explosive expansion of digital textual data and fast progress in automated text analysis provide vast opportunities for innovative social science research. Unfortunately, tools currently available for automated sentiment analysis are mostly restricted to English texts and require considerable contextual adaption to produce valid results. We present a procedure for collecting fine-grained sentiment scores through crowdcoding to build a negative sentiment dictionary in a language and for a domain of choice. The dictionary enables the analysis of large text corpora that resource-intensive hand-coding struggles to cope with. We calculate the tonality of sentences from dictionary words and we validate these estimates with results from manual coding. The results show that the crowdbased dictionary provides efficient and valid measurement of sentiment. Empirical examples illustrate its use by analyzing the tonality of party statements and media reports.
机译:情感在新闻价值,公众舆论,负面竞选活动或政治两极化的研究中很重要,数字文本数据的爆炸性增长以及自动文本分析的快速发展为创新的社会科学研究提供了巨大的机会。不幸的是,当前可用于自动情绪分析的工具大多限于英语文本,并且需要进行适当的上下文匹配以产生有效的结果。我们提出了一种程序,该程序用于通过众码收集来收集细粒度的情感分数,从而以一种语言和所选领域构建否定情感字典。该词典可分析大型文本语料库,而资源密集型手工编码则难以应对。我们从字典单词计算句子的语调,并通过手动编码的结果验证这些估计。结果表明,基于人群的词典可以有效,有效地测量情感。经验示例通过分析政党言论和媒体报道的语调来说明其用法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号