首页> 美国卫生研究院文献>Springer Open Choice >Accurate and efficient numerical solutions for elliptic obstacle problems
【2h】

Accurate and efficient numerical solutions for elliptic obstacle problems

机译:椭圆障碍问题的精确高效数值解

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Elliptic obstacle problems are formulated to find either superharmonic solutions or minimal surfaces that lie on or over the obstacles, by incorporating inequality constraints. In order to solve such problems effectively using finite difference (FD) methods, the article investigates simple iterative algorithms based on the successive over-relaxation (SOR) method. It introduces subgrid FD methods to reduce the accuracy deterioration occurring near the free boundary when the mesh grid does not match with the free boundary. For nonlinear obstacle problems, a method of gradient-weighting is introduced to solve the problem more conveniently and efficiently. The iterative algorithm is analyzed for convergence for both linear and nonlinear obstacle problems. An effective strategy is also suggested to find the optimal relaxation parameter. It has been numerically verified that the resulting obstacle SOR iteration with the optimal parameter converges about one order faster than state-of-the-art methods and the subgrid FD methods reduce numerical errors by one order of magnitude, for most cases. Various numerical examples are given to verify the claim.
机译:通过合并不等式约束,制定了椭圆形障碍物问题以找到超谐解或位于障碍物上方或上方的最小曲面。为了使用有限差分(FD)方法有效解决此类问题,本文研究了基于连续过度松弛(SOR)方法的简单迭代算法。它引入了子网格FD方法,以减少当网格网格与自由边界不匹配时在自由边界附近发生的精度下降。对于非线性障碍物问题,引入了一种梯度加权方法,可以更方便,更有效地解决该问题。分析了迭代算法的线性和非线性障碍问题的收敛性。还建议一种有效的策略来找到最佳松弛参数。数值验证表明,在大多数情况下,具有最佳参数的障碍物SOR迭代收敛速度比最新方法快约一阶,而子网格FD方法将数值误差减小了一个数量级。给出了各种数值示例以验证权利要求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号