首页> 美国卫生研究院文献>Springer Open Choice >Sorting Through the Safety Data Haystack: Using Machine Learning to Identify Individual Case Safety Reports in Social-Digital Media
【2h】

Sorting Through the Safety Data Haystack: Using Machine Learning to Identify Individual Case Safety Reports in Social-Digital Media

机译:整理安全数据干草堆:使用机器学习识别社交数字媒体中的个案安全报告

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

IntroductionThere is increasing interest in social digital media (SDM) as a data source for pharmacovigilance activities; however, SDM is considered a low information content data source for safety data. Given that pharmacovigilance itself operates in a high-noise, lower-validity environment without objective ‘gold standards’ beyond process definitions, the introduction of large volumes of SDM into the pharmacovigilance workflow has the potential to exacerbate issues with limited manual resources to perform adverse event identification and processing. Recent advances in medical informatics have resulted in methods for developing programs which can assist human experts in the detection of valid individual case safety reports (ICSRs) within SDM.
机译:引言人们越来越关注社交数字媒体(SDM)作为药物警戒活动的数据源。但是,SDM被认为是安全数据的低信息内容数据源。鉴于药物警戒本身在高噪声,低效度的环境中运行,而没有过程定义之外的客观“黄金标准”,因此将大量SDM引入药物警戒工作流程中可能会加剧问题,而手工资源有限却会执行不良事件识别和处理。医学信息学的最新进展导致了开发程序的方法,这些程序可以帮助人类专家在SDM中检测有效的个案安全报告(ICSR)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号