首页> 美国卫生研究院文献>Springer Open Choice >ABroAD: A Machine Learning Based Approach to Detect Broadband NIRS Artefacts
【2h】

ABroAD: A Machine Learning Based Approach to Detect Broadband NIRS Artefacts

机译:ABroAD:一种基于机器学习的方法来检测宽带NIRS伪像

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Artefacts are a common and unwanted aspect of any measurement process, especially in a clinical environment, with multiple causes such as environmental changes or motion. In near-infrared spectroscopy (NIRS), there are several existing methods that can be used to identify and remove artefacts to improve the quality of collected data.We have developed a novel Automatic Broadband Artefact Detection (ABroAD) process, using machine learning methods alongside broadband NIRS data to detect common measurement artefacts using the broadband intensity spectrum. Data were collected from eight subjects, using a broadband NIRS monitoring over the frontal lobe with two sensors. Six different artificial artefacts – vertical head movement, horizontal head movement, frowning, pressure, ambient light, torch light – were simulated using movement and light changes on eight subjects in a block test design. It was possible to identify both light artefacts to a good degree, as well as pressure artefacts. This is promising and, by expanding this work to larger datasets, it may be possible to create and train a machine learning pipeline to automate the detection of various artefacts, making the analysis of collected data more reliable.
机译:伪影是任何测量过程的常见和不希望有的方面,尤其是在临床环境中,存在多种原因,例如环境变化或运动。在近红外光谱(NIRS)中,有几种现有方法可用于识别和去除伪影,以提高收集数据的质量。我们开发了一种新颖的自动宽带伪影检测(ABroAD)工艺,并结合了机器学习方法宽带NIRS数据可使用宽带强度谱检测常见的测量伪像。使用宽带NIRS通过两个传感器在额叶上进行监测,从八名受试者中收集数据。在块状测试设计中,使用运动和光照变化模拟了六个不同的人工制品-垂直头运动,水平头运动,皱眉,压力,环境光,手电筒光-模仿了八个对象。可以很好地识别轻度伪像和压力伪像。这是有前途的,并且通过将这项工作扩展到更大的数据集,有可能创建和训练机器学习管道以自动检测各种伪像,从而使收集的数据分析更加可靠。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号