首页> 美国卫生研究院文献>Springer Open Choice >Text analytics approach to extract course improvement suggestions from students’ feedback
【2h】

Text analytics approach to extract course improvement suggestions from students’ feedback

机译:文本分析方法可从学生的反馈中提取课程改进建议

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In academic institutions, it is normal practice that at the end of each term, students are required to complete a questionnaire that is designed to gather students’ perceptions of the instructor and their learning experience in the course. Students’ feedback includes numerical answers to Likert scale questions and textual comments to open-ended questions. Within the textual comments given by the students are embedded suggestions. A suggestion can be explicit or implicit. Any suggestion provides useful pointers on how the instructor can further enhance the student learning experience. However, it is tedious to manually go through all the qualitative comments and extract the suggestions. In this paper, we provide an automated solution for extracting the explicit suggestions from the students’ qualitative feedback comments. The implemented solution leverages existing text mining and data visualization techniques. It comprises three stages, namely data pre-processing, explicit suggestions extraction and visualization. We evaluated our solution using student feedback comments from seven undergraduate core courses taught at the School of Information Systems, Singapore Management University. We compared rule-based methods and statistical classifiers for extracting and summarizing the explicit suggestions. Based on our experiments, the decision tree (C5.0) works the best for extracting the suggestions from students’ qualitative feedback.
机译:在学术机构中,通常的做法是,每学期末要求学生填写一份问卷,该问卷旨在收集学生对教师的看法及其在课程中的学习经验。学生的反馈包括对李克特量表问题的数字答案,以及对开放式问题的文本评论。在学生给出的文字评论中,嵌入了一些建议。建议可以是显式的也可以是隐式的。任何建议都可为教师如何进一步增强学生的学习经验提供有用的指导。但是,手动浏览所有定性注释并提取建议很繁琐。在本文中,我们提供了一种自动解决方案,可以从学生的定性反馈意见中提取明确的建议。实施的解决方案利用了现有的文本挖掘和数据可视化技术。它包括三个阶段,即数据预处理,显式建议提取和可视化。我们使用新加坡管理大学信息系统学院教授的七门本科核心课程的学生反馈意见对我们的解决方案进行了评估。我们比较了基于规则的方法和统计分类器,以提取和总结明确的建议。根据我们的实验,决策树(C5.0)最适合从学生的定性反馈中提取建议。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号