首页> 美国卫生研究院文献>Springer Open Choice >A centrality measure for cycles and subgraphs II
【2h】

A centrality measure for cycles and subgraphs II

机译:周期和子图的集中度度量II

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In a recent work we introduced a measure of importance for groups of vertices in a complex network. This centrality for groups is always between 0 and 1 and induces the eigenvector centrality over vertices. Furthermore, its value over any group is the fraction of all network flows intercepted by this group. Here we provide the rigorous mathematical constructions underpinning these results via a semi-commutative extension of a number theoretic sieve. We then established further relations between the eigenvector centrality and the centrality proposed here, showing that the latter is a proper extension of the former to groups of nodes. We finish by comparing the centrality proposed here with the notion of group-centrality introduced by Everett and Borgatti on two real-world networks: the Wolfe’s dataset and the protein-protein interaction network of the yeast Saccharomyces cerevisiae. In this latter case, we demonstrate that the centrality is able to distinguish protein complexes
机译:在最近的工作中,我们介绍了一种衡量复杂网络中顶点组重要性的方法。组的中心性始终在0到1之间,并在顶点上引发特征向量中心性。此外,它在任何组中的值都是该组所拦截的所有网络流的一部分。在这里,我们通过数论筛的半交换扩展,提供了支持这些结果的严格数学构造。然后,我们在特征向量中心性和此处提出的中心性之间建立了进一步的关系,表明后者是前者到节点组的适当扩展。最后,我们将此处提出的中心性与Everett和Borgatti在两个现实世界网络上提出的“群体中心性”概念进行比较:沃尔夫的数据集和酿酒酵母酵母的蛋白质-蛋白质相互作用网络。在后一种情况下,我们证明中心性能够区分蛋白质复合物

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号