首页> 美国卫生研究院文献>Springer Open Choice >Lyapunov-type inequalities for mixed non-linear forced differential equations within conformable derivatives
【2h】

Lyapunov-type inequalities for mixed non-linear forced differential equations within conformable derivatives

机译:相容导数内混合非线性强迫微分方程的Lyapunov型不等式

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We state and prove new generalized Lyapunov-type and Hartman-type inequalities for a conformable boundary value problem of order α ∈ (1, 2] with mixed non-linearities of the form (Tαax)(t)+r1(t)|x(t)|η1x(t)+r2(t)|x(t)|δ1x(t)=g(t),t(a,b), satisfying the Dirichlet boundary conditions x(a) = x(b) = 0, where r1, r2, and g are real-valued integrable functions, and the non-linearities satisfy the conditions 0  η  1  δ  2. Moreover, Lyapunov-type and Hartman-type inequalities are obtained when the conformable derivative Tαa is replaced by a sequential conformable derivative TαaTαa, α ∈ (1/2, 1]. The potential functions r1, r2 as well as the forcing term g require no sign restrictions. The obtained inequalities generalize some existing results in the literature.
机译:我们陈述并证明了一个新的广义Lyapunov型和Hartman型不等式,适用于α∈(1,2)阶的相容边界值问题,其混合非线性形式为 <修剪> T α a x t + r 1 t | x t | η - 1 x t + r 2 t | x t < mo Stretchy =“ false”>) | δ 1 x t = g t t ∈< / mo> a b )< / mo> 满足Dirichlet边界条件x(a)= x(b)= 0,其中r1,r2和g是实值可积函数,非线性满足条件0 <η<1 <δ<2。此外,当一致的导数 T α a 替换为顺序一致的派生 T α a T α< / mi> a ,α∈(1/2,́1]。势函数r1,r2以及强迫项g不需要符号限制。获得的不等式概括了文献中已有的一些结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号