首页> 美国卫生研究院文献>Springer Open Choice >Surface diagnosticity predicts the high-level representation of regular and irregular object shape in human vision
【2h】

Surface diagnosticity predicts the high-level representation of regular and irregular object shape in human vision

机译:表面诊断可预测人眼中规则和不规则物体形状的高级表示

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The human visual system has an extraordinary capacity to compute three-dimensional (3D) shape structure for both geometrically regular and irregular objects. The goal of this study was to shed new light on the underlying representational structures that support this ability. Observers (N = 85) completed two complementary perceptual tasks. Experiment involved whole–part matching of image parts to whole geometrically regular and irregular novel object shapes. Image parts comprised either regions of edge contour, volumetric parts, or surfaces. Performance was better for irregular than for regular objects and interacted with part type: volumes yielded better matching performance than surfaces for regular but not for irregular objects. The basis for this effect was further explored in Experiment , which used implicit part–whole repetition priming. Here, we orthogonally manipulated shape regularity and a new factor of surface diagnosticity (how predictive a single surface is of object identity). The results showed that surface diagnosticity, not object shape regularity, determined the differential processing of volumes and surfaces. Regardless of shape regularity, objects with low surface diagnosticity were better primed by volumes than by surfaces. In contrast, objects with high surface diagnosticity showed the opposite pattern. These findings are the first to show that surface diagnosticity plays a fundamental role in object recognition. We propose that surface-based shape primitives—rather than volumetric parts—underlie the derivation of 3D object shape in human vision.
机译:人类视觉系统具有非凡的能力,可以为规则的和不规则的几何对象计算三维(3D)形状结构。这项研究的目的是为支持这种能力的潜在表征结构提供新的思路。观察者(N = 85)完成了两个互补的感知任务。实验涉及图像部分的整体匹配,以匹配几何上规则和不规则的新颖对象形状。图像部分包括边缘轮廓区域,体积部分或表面。与不规则对象相比,不规则对象的性能要好,并且可以与零件类型进行交互:与常规对象相比,体积产生的匹配性能要好于规则表面,但对不规则对象而言,体积的匹配性能更好。在实验中进一步探讨了这种效果的基础,该实验使用了隐式的部分-整体重复启动。在这里,我们正交处理形状规则和表面诊断的新因素(如何预测单个表面具有对象身份)。结果表明,表面诊断而不是对象形状规则性决定了体积和表面的差异处理。不管形状规则性如何,具有较低表面诊断性的对象在填充体积时都比在表面上填充更好。相反,具有较高表面诊断性的对象显示相反的模式。这些发现是第一个表明表面诊断在物体识别中起基本作用的研究。我们提出,基于表面的形状基元(而不是体积部分)是人类视觉中3D对象形状的基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号