首页> 美国卫生研究院文献>PLoS Computational Biology >Enhanced Sensitivity to Rapid Input Fluctuations by Nonlinear Threshold Dynamics in Neocortical Pyramidal Neurons
【2h】

Enhanced Sensitivity to Rapid Input Fluctuations by Nonlinear Threshold Dynamics in Neocortical Pyramidal Neurons

机译:新的皮层锥体神经元的非线性阈值动力学增强了对快速输入波动的敏感性。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The way in which single neurons transform input into output spike trains has fundamental consequences for network coding. Theories and modeling studies based on standard Integrate-and-Fire models implicitly assume that, in response to increasingly strong inputs, neurons modify their coding strategy by progressively reducing their selective sensitivity to rapid input fluctuations. Combining mathematical modeling with in vitro experiments, we demonstrate that, in L5 pyramidal neurons, the firing threshold dynamics adaptively adjust the effective timescale of somatic integration in order to preserve sensitivity to rapid signals over a broad range of input statistics. For that, a new Generalized Integrate-and-Fire model featuring nonlinear firing threshold dynamics and conductance-based adaptation is introduced that outperforms state-of-the-art neuron models in predicting the spiking activity of neurons responding to a variety of in vivo-like fluctuating currents. Our model allows for efficient parameter extraction and can be analytically mapped to a Generalized Linear Model in which both the input filter—describing somatic integration—and the spike-history filter—accounting for spike-frequency adaptation—dynamically adapt to the input statistics, as experimentally observed. Overall, our results provide new insights on the computational role of different biophysical processes known to underlie adaptive coding in single neurons and support previous theoretical findings indicating that the nonlinear dynamics of the firing threshold due to Na+-channel inactivation regulate the sensitivity to rapid input fluctuations.
机译:单个神经元将输入转换为输出峰值序列的方式对网络编码具有根本的影响。基于标准的“集成并发射”模型的理论和建模研究隐含地假设,响应于日益强大的输入,神经元通过逐渐降低其对快速输入波动的选择性敏感性来修改其编码策略。将数学模型与体外实验相结合,我们证明,在L5锥体神经元中,触发阈值动力学可自适应地调节体细胞整合的有效时标,以便在广泛的输入统计数据范围内保持对快速信号的敏感性。为此,我们引入了一种新的具有非线性激发阈值动力学和基于电导的适应性的广义积分与发射模型,该模型在预测神经元对多种体内反应的尖峰活动方面表现优于现有的神经元模型。像波动的电流。我们的模型允许有效的参数提取,并且可以分析映射到广义线性模型,在该模型中,输入滤波器(描述体积分)和峰值历史滤波器(考虑峰值频率自适应)动态地适应输入统计数据,如下实验观察。总体而言,我们的结果提供了关于不同生物物理过程的计算作用的新见解,这些过程已知是单个神经元中自适应编码的基础,并支持先前的理论发现,表明由于Na + -通道而导致的放电阈值的非线性动力学灭活调节对快速输入波动的敏感性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号