首页> 美国卫生研究院文献>PLoS Clinical Trials >Molecular Aspect of Good Eating Quality Formation in Japonica Rice
【2h】

Molecular Aspect of Good Eating Quality Formation in Japonica Rice

机译:粳稻良好的饮食品质形成的分子看点

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The composition of amylopectin is the determinant of rice eating quality under certain threshold of protein content and the ratio of amylose and amylopectin. In molecular biology level, the fine structure of amylopectin is determined by relative activities of starch branching enzyme (SBE), granule-bound starch synthase (GBSS), and soluble starch synthase (SSS) in rice grain under the same ADP-Glucose level. But the underlying mechanism of eating quality in molecular biology level remains unclear. This paper reports the differences on major parameters such as SNP and insertion-deletion sites, RNA expressions, and enzyme activities associated with eating quality of japonica varieties. Eight japonica rice varieties with significant differences in various eating quality parameters such as palatability and protein content were used in this experiment. Association analysis between nucleotide polymorphism and eating quality showed that S12 and S13 loci in SBE1, S55 in SSS1, S58 in SSS2A were significantly associated with apparent amylose content, alkali digestion value, setback viscosity, consistency viscosity, pasting temperature, which explained most of the variation in apparent amylose content, setback viscosity, and consistency viscosity; and explained almost all variations in alkali digestion value and pasting temperature. Thirty-five SNPs and insertion-deletions from SBE1, SBE3, GBSS1, SSS1, and SSS2A differentiated high or intermediate palatability rice varieties from low palatability rice varieties. Correlation analysis between enzyme activities and eating quality properties revealed that SBE25 and SSS15/W15 were positively correlated with palatability, whereas GBSS10 and GBSS15 were negatively correlated. Gene expressions showed that SBE1 and SBE3 expressions in high palatability varieties tended to be higher than middle and low palatability varieties. Collectively, SBE1, SBE3, SSS1, and SSS2A, especially SBE1 and SBE3 could improve eating quality, but GBSS1 decreased eating quality. The results indicated the possibility of developing high palatability cultivars through modification of key genes related to japonica rice eating quality formation in starch biosynthesis.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号