首页> 美国卫生研究院文献>The Journal of Biophysical and Biochemical Cytology >Motile kinetochores and polar ejection forces dictate chromosome position on the vertebrate mitotic spindle
【2h】

Motile kinetochores and polar ejection forces dictate chromosome position on the vertebrate mitotic spindle

机译:运动动子体和极地弹出力决定了脊椎动物有丝分裂纺锤体上的染色体位置

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We argue that hypotheses for how chromosomes achieve a metaphase alignment, that are based solely on a tug-of-war between poleward pulling forces produced along the length of opposing kinetochore fibers, are no longer tenable for vertebrates. Instead, kinetochores move themselves and their attached chromosomes, poleward and away from the pole, on the ends of relatively stationary but shortening/elongating kinetochore fiber microtubules. Kinetochores are also "smart" in that they switch between persistent constant-velocity phases of poleward and away from the pole motion, both autonomously and in response to information within the spindle. Several molecular mechanisms may contribute to this directional instability including kinetochore-associated microtubule motors and kinetochore microtubule dynamic instability. The control of kinetochore directional instability, to allow for congression and anaphase, is likely mediated by a vectorial mechanism whose magnitude and orientation depend on the density and orientation or growth of polar microtubules. Polar microtubule arrays have been shown to resist chromosome poleward motion and to push chromosomes away from the pole. These "polar ejection forces" appear to play a key role in regulating kinetochore directional instability, and hence, positions achieved by chromosomes on the spindle.
机译:我们认为,关于染色体如何实现中期对齐的假设,仅基于沿相对的线粒体纤维的长度产生的极向拉力之间的拔河,就不再适用于脊椎动物。取而代之的是,动植物在相对静止但缩短/伸长的动粒纤维微管的末端向极点移动并远离极点移动它们的染色体。动摆也很“聪明”,因为它们既可以自主地响应主轴内部的信息,又可以在极移和远离极移的持续恒定速度阶段之间切换。几种分子机制可能会导致这种方向性不稳定,包括动粒相关的微管马达和动粒微管的动态不稳定性。控制线粒体方向的不稳定性,以允许国会和后期,可能是由矢量机制介导的,矢量机制的大小和方向取决于极性微管的密度和方向或生长。极微管阵列已被证明可以抵抗染色体极向运动并将染色体推离极点。这些“极性弹射力”似乎在调节线粒体方向的不稳定性以及因此由纺锤体上的染色体获得的位置中起关键作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号