首页> 美国卫生研究院文献>IOS Press Open Library >Digital radiography image denoising using a generative adversarial network
【2h】

Digital radiography image denoising using a generative adversarial network

机译:使用生成对抗网络的数字射线照相图像去噪

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Statistical noise may degrade the x-ray image quality of digital radiography (DR) system. This corruption can be alleviated by extending exposure time of detectors and increasing the intensity of radiation. However, in some instances, such as the security check and medical imaging examination, the system demands rapid and low-dose detection. In this study, we propose and test a generative adversarial network (GAN) based x-ray image denoising method. Images used in this study were acquired from a digital radiography (DR) imaging system. Promising results have been obtained in our experiments with x-ray images for the security check application. The Experiment results demonstrated that the proposed new image denoising method was able to effectively remove the statistical noise from x-ray images, while kept sharp edge and clear structure. Thus, comparing with the traditional convolutional neural network (CNN) based method, the proposed new method generates more plausible-looking images, which contains more details.
机译:统计噪声可能会降低数字射线照相(DR)系统的X射线图像质量。延长检测器的曝光时间并增加辐射强度可以减轻这种损坏。但是,在某些情况下,例如安全检查和医学影像检查,该系统需要快速且低剂量的检测。在这项研究中,我们提出并测试了基于生成对抗网络(GAN)的X射线图像去噪方法。本研究中使用的图像是从数字射线照相(DR)成像系统获取的。我们在使用X射线图像进行安全检查应用的实验中获得了可喜的结果。实验结果表明,所提出的新的图像去噪方法能够有效去除x射线图像中的统计噪声,同时保持清晰的边缘和清晰的结构。因此,与基于传统的卷积神经网络(CNN)的方法相比,该新方法生成了看起来更真实的图像,其中包含更多细节。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号