首页> 美国卫生研究院文献>Frontiers in Genetics >k-Skip-n-Gram-RF: A Random Forest Based Method for Alzheimer's Disease Protein Identification
【2h】

k-Skip-n-Gram-RF: A Random Forest Based Method for Alzheimer's Disease Protein Identification

机译:k-Skip-n-Gram-RF:基于随机森林的阿尔茨海默氏病蛋白鉴定方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, a computational method based on machine learning technique for identifying Alzheimer's disease genes is proposed. Compared with most existing machine learning based methods, existing methods predict Alzheimer's disease genes by using structural magnetic resonance imaging (MRI) technique. Most methods have attained acceptable results, but the cost is expensive and time consuming. Thus, we proposed a computational method for identifying Alzheimer disease genes by use of the sequence information of proteins, and classify the feature vectors by random forest. In the proposed method, the gene protein information is extracted by adaptive k-skip-n-gram features. The proposed method can attain the accuracy to 85.5% on the selected UniProt dataset, which has been demonstrated by the experimental results.
机译:本文提出了一种基于机器学习技术的计算阿尔茨海默氏病基因的方法。与大多数现有的基于机器学习的方法相比,现有方法通过使用结构磁共振成像(MRI)技术预测阿尔茨海默氏病基因。大多数方法已获得可接受的结果,但是成本昂贵且耗时。因此,我们提出了一种利用蛋白质序列信息识别阿尔茨海默病基因的计算方法,并通过随机森林对特征向量进行分类。在提出的方法中,通过自适应k-skip-n-gram特征提取基因蛋白质信息。实验结果证明了该方法在所选UniProt数据集上的准确率达到85.5%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号