首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Folate Acts in E. coli to Accelerate C. elegans Aging Independently of Bacterial Biosynthesis
【2h】

Folate Acts in E. coli to Accelerate C. elegans Aging Independently of Bacterial Biosynthesis

机译:叶酸在大肠杆菌中起作用独立于细菌生物合成加速线虫的衰老

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionBoth nutrition and the host-associated microbiota are thought to impact longevity (, ). Diet influences the metabolism of gut microbes, which in turn can synthesize nutrients for the host. These interactions make it difficult to unravel the contributions of diet and the gut microbiota to long-term health (). This complexity can be addressed with model systems such as the nematode Caenorhabditis elegans (). Yet even here, there are numerous interactions between the nutrient agar medium, the Escherichia coli bacterial lawn, and the worm. Chemical manipulations of the medium and genetic manipulations of both E. coli and C. elegans provide tools to understand these interactions ().Folates in their reduced tetrahydrofolate (THF) form are required as enzymatic cofactors in the folate cycle; a series of metabolic steps found in all cells (including both bacteria and animals) required for cell biosynthesis. Products include purines, pyrimidines, glycine, and methionine, which are required to generate the methyl donor molecule S-adenosyl methionine (SAM) (). Animals cannot synthesize folates and so obtain folates from their diets and associated microbes (, ). Our previous research showed that C. elegans lifespan is increased when E. coli folate synthesis is disrupted either by a mutation in the gene aroD, which is needed to make aromatic compounds including the folate precursor para-aminobenzoic acid (PABA), or by sulfamethoxazole (SMX), a sulfonamide drug that competes with PABA for the active site of the enzyme dihydropteroate synthase (). This enzyme is a key step in folate biosynthesis and is absent from animals. C. elegans obtains folates from E. coli and thus several possible mechanisms might explain why E. coli folate synthesis affects C. elegans lifespan. Distinguishing the effects of folates in bacteria and folates in their animal hosts is important because folate supplementation is beneficial to human health and any intervention would need to maintain healthy levels of serum folate.Dietary, or caloric, restriction has been shown to extend the lifespan of C. elegans (, ). SMX does not slow E. coli growth and therefore has no effect on food availability. Furthermore, C. elegans grow and reproduce normally (). Thus, a limitation of macronutrients is an unlikely explanation. Alternatively, inhibition of E. coli folate synthesis may influence C. elegans lifespan by limiting dietary folate and/or a specific change in folate-dependent nutrients (). For example, restriction of methionine increases lifespan in rodents and influences lifespan in Drosophila (, ). Mutation of C. elegans sams-1, the gene encoding SAM synthase, extends lifespan (href="#bib24" rid="bib24" class=" bibr popnode">Hansen et al., 2005). The diabetes drug metformin increases C. elegans lifespan in a manner dependent on the E. coli strain and changes in C. elegans folate and methionine metabolism are implicated in mediating the lifespan extension (href="#bib9" rid="bib9" class=" bibr popnode">Cabreiro et al., 2013).Another possible explanation is that folate synthesis inhibition increases C. elegans lifespan by altering E. coli physiology. E. coli can accumulate in the intestine of older C. elegans adults and because treatment of E. coli with antibiotics or UV increases worm lifespan, this accumulation is widely thought to accelerate C. elegans aging (href="#bib17" rid="bib17" class=" bibr popnode">Garigan et al., 2002, href="#bib18" rid="bib18" class=" bibr popnode">Gems and Riddle, 2000, href="#bib36" rid="bib36" class=" bibr popnode">McGee et al., 2011). More subtly, changes in bacterial toxicity caused by changes in bacterial metabolism might influence C. elegans aging. The E. coli ubiG mutant, which cannot synthesis coenzyme Q/ubiquinone, increases worm lifespan by influencing bacterial respiration rather than dietary intake of Q (href="#bib43" rid="bib43" class=" bibr popnode">Saiki et al., 2008).Here, we show that modulating folate uptake or the folate cycle in C. elegans does not affect lifespan, suggesting E. coli folate influences C. elegans lifespan by acting on E. coli physiology. Apart from the Q synthesis genes and aroD (href="#bib43" rid="bib43" class=" bibr popnode">Saiki et al., 2008, href="#bib49" rid="bib49" class=" bibr popnode">Virk et al., 2012), little is known about how E. coli genetics influences C. elegans lifespan. A genetic screen of over 1,000 E. coli mutants shows that bacterial growth does not correlate with C. elegans survival and only a few specific interventions increase C. elegans lifespan, including the mutation of genes involved in E. coli folate synthesis, but not in the E. coli folate cycle. In addition to its role in bacterial growth, we propose that folate acts to change E. coli physiology in a way that accelerates C. elegans aging.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介营养和与宿主相关的微生物群均会影响寿命(,)。饮食会影响肠道微生物的代谢,进而可以为宿主合成营养。这些相互作用使得难以阐明饮食和肠道菌群对长期健康的贡献()。这种复杂性可以通过模型系统(例如线虫秀丽隐杆线虫)解决。即使在这里,营养琼脂培养基,大肠杆菌细菌草坪和蠕虫之间也存在许多相互作用。大肠杆菌和秀丽隐杆线虫的培养基的化学操作和遗传操作均提供了了解这些相互作用的工具()。叶酸循环中需要四氢叶酸(THF)还原形式的叶酸作为酶促辅因子;在细胞生物合成所需的所有细胞(包括细菌和动物)中发现的一系列代谢步骤。产品包括嘌呤,嘧啶,甘氨酸和蛋氨酸,它们是产生甲基供体分子S-腺苷甲硫氨酸(SAM)()所需的。动物无法合成叶酸,因此会从其饮食和相关微生物中获取叶酸(,)。我们以前的研究表明,当大肠杆菌叶酸的合成被aroD基因突变(包括制造叶酸前体对氨基苯甲酸(PABA)的芳香族化合物)或磺胺甲恶唑破坏时,大肠杆菌叶酸的合成会增加线虫的寿命。 (SMX),一种磺胺药,与PABA竞争二氢蝶呤合酶()的活性位点。该酶是叶酸生物合成中的关键步骤,动物体内不存在。秀丽隐杆线虫从大肠杆菌中获得叶酸,因此几种可能的机制可能解释了为什么大肠杆菌叶酸合成会影响秀丽隐杆线虫的寿命。区分叶酸对细菌和动物宿主叶酸的影响很重要,因为补充叶酸对人体健康有益,任何干预措施都需要维持血清叶酸的健康水平。饮食或热量限制已表明可以延长叶酸的寿命。 C.elegans(,)。 SMX不会减慢大肠杆菌的生长,因此对食物供应量没有影响。此外,秀丽隐杆线虫正常生长和繁殖()。因此,限制大量营养素是不可能的解释。另外,抑制叶酸大肠杆菌的合成可能会通过限制饮食中的叶酸和/或叶酸依赖性养分的特定变化来影响线虫的寿命()。例如,蛋氨酸的限制会增加啮齿动物的寿命,并影响果蝇( Drosophila (,))的寿命。 C的突变。线虫sams-1 是SAM合酶的编码基因,可延长寿命(href="#bib24" rid="bib24" class=" bibr popnode"> Hansen等人,2005 )。糖尿病药物二甲双胍可提高摄氏温度。线虫的寿命取决于 E。大肠杆菌菌株和 C的变化。线虫叶酸和蛋氨酸的代谢与延长寿命有关(href="#bib9" rid="bib9" class=" bibr popnode"> Cabreiro et al。,2013 )。可能的解释是叶酸合成的抑制会增加C。通过改变 E来延长线虫寿命。大肠生理学。 E。大肠菌可在较老的 C肠内积聚。线虫成年,并且因为治疗 E。含有抗生素或紫外线的大肠杆菌会延长蠕虫的寿命,人们普遍认为这种积累会加速 C。线虫老化(href="#bib17" rid="bib17" class=" bibr popnode"> Garigan等人,2002 ,href =“#bib18” rid =“ bib18 “ class =“ bibr popnode”> Gems and Riddle,2000 ,href="#bib36"rid="bib36" class="bibr popnode"> McGee等人,2011 )。更细微地讲,由细菌代谢变化引起的细菌毒性变化可能影响C。线虫老化。 E。不能合成辅酶Q /泛醌的大肠ubiG 突变体通过影响细菌呼吸而不是通过饮食摄入Q来延长蠕虫的寿命(href="#bib43" rid="bib43" class=" bibr popnode"> Saiki et al。,2008 )。在此,我们证明了调节 C中的叶酸摄取或叶酸循环。线虫不会影响寿命,这表明 E。叶酸对大肠杆菌的影响 C。线虫的寿命是通过对 E起作用。大肠生理学。除了Q合成基因和 aroD (href="#bib43" rid="bib43" class=" bibr popnode"> Saiki et al。,2008 ,href="#bib49" rid="bib49" class=" bibr popnode"> Virk等人,2012 ),对于 E的了解很少。大肠遗传学影响 C。线虫的寿命。超过1000个 E的基因筛选。大肠杆菌突变体表明细菌生长与 C不相关。线虫的存活率,只有一些特定的干预措施可以增加 C的发病率。线虫的寿命,包括与 E有关的基因突变。大肠杆菌叶酸的合成,但不是在 E中。大肠杆菌叶酸循环。除了其在细菌生长中的作用外,我们建议叶酸起改变 E的作用。 生理学以加速 C的方式。线虫老化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号