首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Structural and Functional Insights into Bacillus subtilis Sigma Factor Inhibitor CsfB
【2h】

Structural and Functional Insights into Bacillus subtilis Sigma Factor Inhibitor CsfB

机译:枯草芽孢杆菌西格玛因子抑制剂CsfB的结构和功能的见解。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionEukaryotic and prokaryotic cells alike possess the ability to alter their phenotypes through global changes in gene expression. In bacteria, these transitions enable survival during stress conditions, drive developmental programs, and promote infection of host organisms. One common mechanism bacteria utilize to effect large-scale changes in gene expression is through alternative sigma (σ) factor subunits of RNA polymerase (RNAP). The dissociable RNAP sigma factor subunit is responsible for recognition of promoter DNA and the subsequent initiation of transcription. Most sigma factors are members of the σ70 superfamily, which is subdivided into four classes based upon conservation and the presence/absence of the conserved sigma domains (σ1.1, σ2, σ3, and σ4) that mediate interactions with RNAP and/or promoter DNA (reviewed in , ). All bacteria employ an essential primary sigma factor (class I) that directs transcription of housekeeping genes; many bacteria also possess alternative sigma factors (classes II, III, and IV) that compete for binding to RNAP and redirect it to transcribe sets of genes required for adaptive responses. Hence, the suite of genes expressed in a bacterial cell can be reprogrammed by manipulating the levels, activity, or availability of alternative sigma factors (reviewed in ).One prevalent form of post-translational regulation of alternative sigma factors occurs via anti-sigma factors: proteins that bind to and prevent their cognate sigma factor from interacting with RNAP. Unlike sigma factors, which share sequence, structural, and functional conservation, anti-sigma factors are more diverse in their sequences, structures, and/or mode of sigma factor inhibition (reviewed in ). A number of structural and bioinformatics analyses have revealed that anti-sigma factors for the class IV extracytoplasmic function (ECF) sigma factors often share one of two conserved anti-sigma domain structures, despite little sequence conservation (reviewed in ). Less is known, however, of the structural features of anti-sigma factors that antagonize non-class IV alternative sigma factors, given the limited number of structures determined to date (, , ).Here, we have structurally analyzed CsfB (also called Gin), a small, Zn2+-binding anti-sigma factor that inhibits two class III alternative sigma factors during spore formation by the model bacterium Bacillus subtilis (A) (, , , , , ). In the forespore cell (the nascent spore), CsfB binds and inhibits the late-acting sigma factor σG, helping to ensure that it does not become active before the early-acting sigma factor σF has completed its program of gene expression (href="#bib22" rid="bib22" class=" bibr popnode">Karmazyn-Campelli et al., 2008, href="#bib36" rid="bib36" class=" bibr popnode">Rhayat et al., 2009). In the mother cell, which helps support the development of the forespore, CsfB binds the early-acting sigma factor σE, helping to inactivate it after the switch to σK (href="#bib39" rid="bib39" class=" bibr popnode">Serrano et al., 2015). Here, we report the structure of CsfB and characterize its interaction with σG and σE.href="/pmc/articles/PMC5890618/figure/fig1/" target="figure" rid-figpopup="fig1" rid-ob="ob-fig1">class="inline_block ts_canvas" href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=5890618_gr1.jpg" target="tileshopwindow">target="object" href="/pmc/articles/PMC5890618/figure/fig1/?report=objectonly">Open in a separate windowclass="figpopup" href="/pmc/articles/PMC5890618/figure/fig1/" target="figure" rid-figpopup="fig1" rid-ob="ob-fig1">Figure 1The Anti-sigma Factor CsfB Helps to Orchestrate the Switch from Early to Late Gene Expression during B. subtilis Sporulation(A) Cartoon depiction of the role of the dual-specificity anti-sigma factor CsfB in regulating the transition from early to late gene expression during B. subtilis sporulation. Early in sporulation (reviewed in href="#bib45" rid="bib45" class=" bibr popnode">Tan and Ramamurthi, 2014), an asymmetric cell division event produces two cells: a smaller forespore (the nascent spore) and a larger mother cell. Initially, these two cells lie side-by-side; the mother cell then engulfs the forespore in a phagocytic-like process. At early times, σF and σE drive gene expression in the forespore and mother cell, respectively. Among the genes activated by σF and σE are those encoding the late-acting sigma factors, σG and σK, respectively (dashed arrows). The anti-sigma factor CsfB is expressed in both compartments under the control of σF and σK (dashed arrows). In the forespore, CsfB antagonizes σG at early times (barred line). In the mother cell, CsfB antagonizes σE at later times (barred line).(B) 1H-15N HSQC spectrum of CsfB (orange). Full assignment of the cleaved CsfB version appears in black (CsfB1−48), partial assignment of the residual full-length CsfB in blue and the tag residues in gray; sc denotes side chain resonances. The C-terminal residue from the cleaved version (A48) is highlighted by a green square.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介真核细胞和原核细胞都具有通过基因表达的整体变化来改变其表型的能力。 。在细菌中,这些转变可在压力条件下存活,驱动发育程序,并促进宿主生物体的感染。细菌用于影响基因表达的大规模变化的一种常见机制是通过RNA聚合酶(RNAP)的sigma(σ)因子亚基。可分离的RNAPσ因子亚基负责识别启动子DNA和随后的转录起始。大多数sigma因子是σ 70 超家族的成员,该超家族根据守恒和守恒的sigma域(σ1.1,σ2,σ3和σ4)的存在/不存在分为四类。介导与RNAP和/或启动子DNA的相互作用(参见,)。所有细菌都使用必需的初级sigma因子(I类)来指导管家基因的转录。许多细菌还拥有其他sigma因子(II,III和IV类),它们竞争与RNAP的结合并将其重定向为转录适应性反应所需的基因集。因此,可以通过操纵替代sigma因子的水平,活性或可用性来对细菌细胞中表达的基因进行重新编程(参见综述)。抗sigma因子发生翻译sigma因子的翻译后调控的一种普遍形式。 :结合并阻止其同源西格玛因子与RNAP相互作用的蛋白质。与具有序列,结构和功能保守性的sigma因子不同,抗sigma因子在其抑制sigma因子的序列,结构和/或模式方面更具多样性。许多结构和生物信息学分析表明,尽管很少保留序列,但用于IV类胞外功能(ECF)σ因子的抗σ因子通常共享两个保守的抗σ域结构之一。然而,鉴于迄今确定的结构数量有限(,),对抗非IV类替代sigma因子的抗sigma因子的结构特征知之甚少。在这里,我们对CsfB(也称为Gin)进行了结构分析),一种小的Zn 2 + 结合抗sigma因子,可在枯草芽孢杆菌(A)(B)的模型细菌形成孢子的过程中抑制两个III类替代sigma因子(,,,,,,)。在前孢子细胞(新生孢子)中,CsfB结合并抑制晚期作用的sigma因子σ G ,有助于确保其在早期作用的sigma因子σ之前不活跃。 F 已完成其基因表达程序(href="#bib22" rid="bib22" class=" bibr popnode"> Karmazyn-Campelli等,2008 ,href = “#bib36” rid =“ bib36” class =“ bibr popnode”> Rhayat等人,2009 )。在有助于支持前孢子发育的母细胞中,CsfB结合了早期作用的sigma因子σ E ,有助于在切换至σ K 后使其失活( href="#bib39" rid="bib39" class=" bibr popnode">塞拉诺等人,2015 )。在这里,我们报告CsfB的结构,并描述其与σ G 和σ E 的相互作用。<!-fig ft0-> <!-fig mode = article f1-> href="/pmc/articles/PMC5890618/figure/fig1/" target="figure" rid-figpopup="fig1" rid-ob="ob-fig1"> <!-fig / graphic | fig / alternatives / graphic mode =“ anchred” m1-> class =“ inline_block ts_canvas” href =“ / core / lw / 2.0 / html / tileshop_pmc / tileshop_pmc_inline.html?title = Click%20on%20image%20to %20zoom&p = PMC3&id = 5890618_gr1.jpg“ target =” tileshopwindow“> target="object" href="/pmc/articles/PMC5890618/figure/fig1/?report=objectonly">在单独的窗口中打开窗口 class =“ figpopup” href =“ / pmc / articles / PMC5890618 / figure / fig1 /” target =“ figure” rid-figpopup =“ fig1” rid-ob =“ ob-图1 <!-标题a7->抗σ因子CsfB有助于协调B.subtilis孢子形成过程中从早期基因表达向晚期基因表达的转换(A)卡通插图双特异性抗sigma因子CsfB在调节从枯草芽孢杆菌孢子形成过程中的早期至晚期基因表达。孢子形成早期(参见href="#bib45" rid="bib45" class=" bibr popnode"> Tan和Ramamurthi,2014 ),不对称细胞分裂事件产生两个细胞:较小的前孢子(新生孢子)和更大的母细胞。最初,这两个单元并排放置。然后母细胞以吞噬样过程吞噬前孢子。在早期,σ F 和σ E 分别驱动前孢子和母细胞中的基因表达。 σ F 和σ E 激活的基因中有编码后作用sigma因子σ G 和σ K < / sup>(虚线箭头)。抗σ因子CsfB在σ F 和σ K 的控制下在两个区室中表达(虚线箭头)。在前孢子中,CsfB在早期会拮抗σ G (禁止线)。在母细胞中,CsfB在以后的时间(禁止线)拮抗σ E 。(B)CsfB的 1 H- 15 N HSQC光谱(橙子)。切割的CsfB版本的全部分配以黑色显示(CsfB 1-48 ),剩余的全长CsfB的部分分配为蓝色,标签残基为灰色; sc表示侧链共振。裂解形式(A48)的C末端残基以绿色方块突出显示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号